Online neural network application for compensation of the VSI voltage nonlinearities

dc.contributor.authorBuchta, Luděkcs
dc.contributor.authorKozovský, Matúšcs
dc.date.issued2023-10-16cs
dc.description.abstractThe paper aims to solve the distortion problem of the inverter output voltages that cause harmonic deformation of the phase currents and ripple of dq- currents of the three-phase permanent magnet synchronous motor (PMSM). The inverter non-linearities adversely affect the effectiveness of the PMSM control algorithm. The compensation strategy is based on the neural network and knowledge of the three-phase PMSM model structure and its parameters. The input data for the neural network consist of the normed values and detected polarities of the phase currents and rotor position information. As a result, the proposed artificial neural network (ANN) can extract non-linear functions from the measured data to compensate for the VSI output voltages. The ANN is designed to learn online while the PMSM is running. The back-propagation algorithm is used for neural network learning. The proposed stratégy was implemented in an AURIX TC397 microcontroller and validated by experiments on a real PMSM. The presented results demonstrate the effectiveness of the proposed solution.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. 2023, p. 1-6.en
dc.identifier.doi10.1109/IECON51785.2023.10312305cs
dc.identifier.isbn979-8-3503-3182-0cs
dc.identifier.orcid0000-0002-8954-3495cs
dc.identifier.orcid0000-0002-1547-1003cs
dc.identifier.other185462cs
dc.identifier.researcheridG-8085-2014cs
dc.identifier.researcheridE-2371-2018cs
dc.identifier.scopus56028720700cs
dc.identifier.urihttp://hdl.handle.net/11012/245227
dc.language.isoencs
dc.publisherIEEEcs
dc.relationEuropean Union (EU) & "Horizon 2020"
dc.relation.ispartofIECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Societycs
dc.relation.projectIdinfo:eu-repo/grantAgreement/EC/H2020/857306/EU//RICAIP
dc.relation.projectIdinfo:eu-repo/grantAgreement/EC/H2020/101007326/EU//AI4CSM
dc.relation.urihttps://ieeexplore.ieee.org/document/10312305cs
dc.rights(C) IEEEcs
dc.rights.accessopenAccesscs
dc.subjectdead-time compensationen
dc.subjectartificial neural network (ANN)en
dc.subjectvoltage source inverter (VSI)en
dc.subjectpermanent magnet synchronous motor (PMSM)en
dc.titleOnline neural network application for compensation of the VSI voltage nonlinearitiesen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-185462en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:44en
sync.item.modts2025.01.17 22:32:15en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IECON51785.2023.10312305accepted.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:
file IECON51785.2023.10312305accepted.pdf