Application of spectroscopic methods for direct characterization of photosynthetic pigments and inert intracellular components in the model purple non sulfur bacterium Rhodospirillum rubrum

dc.contributor.authorSlaninova, Evacs
dc.contributor.authorPacasova, Viktorie-Alexandracs
dc.contributor.authorSamek, Otacs
dc.contributor.authorFleuriot-Blitman, Hugocs
dc.contributor.authorZinn, Manfredcs
dc.contributor.authorKoller, Martincs
dc.contributor.authorBenešová, Markétacs
dc.contributor.authorObruča, Stanislavcs
dc.contributor.authorSedláček, Petrcs
dc.coverage.issueDecembercs
dc.coverage.volume24cs
dc.date.accessioned2026-01-20T06:54:08Z
dc.date.issued2025-12-14cs
dc.description.abstractNon-invasive spectroscopic methods are increasingly valued in life sciences, where preserving the native state of biomolecules is essential for accurate interpretation. Traditional analyses of microbial compounds typically involve solvent-based extraction and chromatographic separation processes, which are time consuming, damaging to samples, and can alter biomolecular structures of complexes. To overcome these limitations, we developed a novel spectroscopic workflow for direct metabolite monitoring in microbial cells. In this study, we established a combined spectroscopic methodology that allows direct pigment and polyhydroxyalkanoates (PHAs) analysis in complex biological samples without requiring chemical extraction procedures. The UV-Vis spectroscopy technique using an integrating sphere enables direct monitoring of pigments even in turbid whole cell suspensions, providing detailed fingerprints of bacteriochlorophyll a and carotenoids in their natural environment. Together, these techniques provide consistent information about cellular composition. Using the photosynthetic bacterium Rhodospirillum rubrum as a model organism, we demonstrate that our combined spectroscopic approach can resolve pigment states, reveal intracellular PHA content and crystallinity, and measure carotenoids and bacteriochlorophylls directly in native whole cell suspensions. Furthermore, advanced data processing provided an improved interpretation of pigment and PHA states in different cellular forms. This innovative combination of spectroscopic techniques reduces sample manipulation, preserves cellular integrity and provides rapid, precise, and environmentally friendly analysis of microbial metabolites in their natural physiological conditions. The demonstrated workflow is broadly applicable to biological samples where maintaining biomolecular integrity is crucial, and it has strong potential for applications in process analytical technology and industrial biotechnology.en
dc.description.abstractNon-invasive spectroscopic methods are increasingly valued in life sciences, where preserving the native state of biomolecules is essential for accurate interpretation. Traditional analyses of microbial compounds typically involve solvent-based extraction and chromatographic separation processes, which are time consuming, damaging to samples, and can alter biomolecular structures of complexes. To overcome these limitations, we developed a novel spectroscopic workflow for direct metabolite monitoring in microbial cells. In this study, we established a combined spectroscopic methodology that allows direct pigment and polyhydroxyalkanoates (PHAs) analysis in complex biological samples without requiring chemical extraction procedures. The UV-Vis spectroscopy technique using an integrating sphere enables direct monitoring of pigments even in turbid whole cell suspensions, providing detailed fingerprints of bacteriochlorophyll a and carotenoids in their natural environment. Together, these techniques provide consistent information about cellular composition. Using the photosynthetic bacterium Rhodospirillum rubrum as a model organism, we demonstrate that our combined spectroscopic approach can resolve pigment states, reveal intracellular PHA content and crystallinity, and measure carotenoids and bacteriochlorophylls directly in native whole cell suspensions. Furthermore, advanced data processing provided an improved interpretation of pigment and PHA states in different cellular forms. This innovative combination of spectroscopic techniques reduces sample manipulation, preserves cellular integrity and provides rapid, precise, and environmentally friendly analysis of microbial metabolites in their natural physiological conditions. The demonstrated workflow is broadly applicable to biological samples where maintaining biomolecular integrity is crucial, and it has strong potential for applications in process analytical technology and industrial biotechnology.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMicrobial Cell Factories. 2025, vol. 24, issue December, p. 1-15.en
dc.identifier.doi10.1186/s12934-025-02876-wcs
dc.identifier.issn1475-2859cs
dc.identifier.orcid0000-0002-1808-8632cs
dc.identifier.orcid0009-0002-4805-4887cs
dc.identifier.orcid0000-0001-8188-7608cs
dc.identifier.orcid0009-0006-7929-6482cs
dc.identifier.orcid0000-0003-3565-3872cs
dc.identifier.orcid0000-0002-9251-1822cs
dc.identifier.orcid0000-0002-3635-3698cs
dc.identifier.orcid0000-0002-9270-195Xcs
dc.identifier.orcid0000-0002-6211-9643cs
dc.identifier.other200064cs
dc.identifier.researcheridPFN-4058-2025cs
dc.identifier.researcheridPFB-7791-2025cs
dc.identifier.researcheridKXA-7367-2024cs
dc.identifier.researcheridPFN-7792-2025cs
dc.identifier.researcheridN-1196-2014cs
dc.identifier.scopus25621797900cs
dc.identifier.scopus25621752900cs
dc.identifier.urihttps://hdl.handle.net/11012/255842
dc.language.isoencs
dc.relation.ispartofMicrobial Cell Factoriescs
dc.relation.urihttps://link.springer.com/article/10.1186/s12934-025-02876-wcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1475-2859/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectRhodospirillum rubrumen
dc.subjectPhotosynthetic pigmentsen
dc.subjectCarotenoidsen
dc.subjectBacteriochlorophyll aen
dc.subjectPolyhydroxyalkanoatesen
dc.subjectUV-Vis spectroscopyen
dc.subjectVibrational spectroscopyen
dc.subjectRhodospirillum rubrum
dc.subjectPhotosynthetic pigments
dc.subjectCarotenoids
dc.subjectBacteriochlorophyll a
dc.subjectPolyhydroxyalkanoates
dc.subjectUV-Vis spectroscopy
dc.subjectVibrational spectroscopy
dc.titleApplication of spectroscopic methods for direct characterization of photosynthetic pigments and inert intracellular components in the model purple non sulfur bacterium Rhodospirillum rubrumen
dc.title.alternativeApplication of spectroscopic methods for direct characterization of photosynthetic pigments and inert intracellular components in the model purple non sulfur bacterium Rhodospirillum rubrumen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-200064en
sync.item.dbtypeVAVen
sync.item.insts2026.01.20 07:54:08en
sync.item.modts2026.01.20 07:32:52en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie potravin a biotechnologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s1293402502876w.pdf
Size:
3.41 MB
Format:
Adobe Portable Document Format
Description:
file s1293402502876w.pdf