Comparison of Different Load Spectra on Residual Fatigue Lifetime of Railway Axle

Loading...
Thumbnail Image

Authors

Pokorný, Pavel
Náhlík, Luboš
Hutař, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The railway axles are subjected to variable amplitude loading. The variability is caused by many different regimes of train operation. The dominant load is caused by the weight of the vehicle, which generates rotary bending during train movement. Nevertheless, there are additional forces, which are generated when train goes through curved track, over crossovers, switches, rail joints etc. Present non-destructive defectoscopy can reliably detect only relatively long cracks (approximately 2 mm long or longer). Hence there is a risk that the existing crack is not detected. Therefore, for conservative estimation of the residual fatigue lifetime the railway axle with a crack should be considered. The behaviour of the crack depends on load spectrum of railway axle. Hence for accurate determination of residual fatigue lifetime of the railway axle is necessary to know representative load spectrum. This paper compares several measured load spectra of railway axles, which are available in the literature. The effect of different load spectra is shown on two widely used materials for railway axles: EA1N and EA4T steels. Obtained results could be used for safer operation of railway axles.
The railway axles are subjected to variable amplitude loading. The variability is caused by many different regimes of train operation. The dominant load is caused by the weight of the vehicle, which generates rotary bending during train movement. Nevertheless, there are additional forces, which are generated when train goes through curved track, over crossovers, switches, rail joints etc. Present non-destructive defectoscopy can reliably detect only relatively long cracks (approximately 2 mm long or longer). Hence there is a risk that the existing crack is not detected. Therefore, for conservative estimation of the residual fatigue lifetime the railway axle with a crack should be considered. The behaviour of the crack depends on load spectrum of railway axle. Hence for accurate determination of residual fatigue lifetime of the railway axle is necessary to know representative load spectrum. This paper compares several measured load spectra of railway axles, which are available in the literature. The effect of different load spectra is shown on two widely used materials for railway axles: EA1N and EA4T steels. Obtained results could be used for safer operation of railway axles.

Description

Citation

Procedia Engineering. 2014, vol. 74, issue 1, p. 313-316.
https://www.sciencedirect.com/science/article/pii/S187770581400839X

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported
Citace PRO