Assessment of crack stability in a quasi-brittle particle composite

Loading...
Thumbnail Image

Authors

Malíková, Lucie
Klusák, Jan
Keršner, Zbyněk

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Fracture behaviour of a crack in a particle (silicate based) composite is studied. The crack propagation depends not only on mutual elastic mismatch of matrix and aggregate but also the influence of the interfacial transition zone (ITZ) between the matrix and the aggregate is discussed. Various combinations of materials and geometry of matrix, aggregate and ITZ can improve or degrade fracture properties of the composite. Extensive numerical simulations on a basic 3-point-bending cracked specimen via the finite element method are performed in order to analyze the stress field near the crack tip. Linear elastic fracture mechanics approach is utilized in order to assess the crack stability and summarize several conclusions.
Fracture behaviour of a crack in a particle (silicate based) composite is studied. The crack propagation depends not only on mutual elastic mismatch of matrix and aggregate but also the influence of the interfacial transition zone (ITZ) between the matrix and the aggregate is discussed. Various combinations of materials and geometry of matrix, aggregate and ITZ can improve or degrade fracture properties of the composite. Extensive numerical simulations on a basic 3-point-bending cracked specimen via the finite element method are performed in order to analyze the stress field near the crack tip. Linear elastic fracture mechanics approach is utilized in order to assess the crack stability and summarize several conclusions.

Description

Citation

Procedia Engineering. 2017, vol. 2017, issue 190, p. 49-53.
https://www.sciencedirect.com/science/article/pii/S1877705817324463?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO