Assessment of crack stability in a quasi-brittle particle composite

Loading...
Thumbnail Image
Date
2017-01-01
Authors
Malíková, Lucie
Klusák, Jan
Keršner, Zbyněk
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
Fracture behaviour of a crack in a particle (silicate based) composite is studied. The crack propagation depends not only on mutual elastic mismatch of matrix and aggregate but also the influence of the interfacial transition zone (ITZ) between the matrix and the aggregate is discussed. Various combinations of materials and geometry of matrix, aggregate and ITZ can improve or degrade fracture properties of the composite. Extensive numerical simulations on a basic 3-point-bending cracked specimen via the finite element method are performed in order to analyze the stress field near the crack tip. Linear elastic fracture mechanics approach is utilized in order to assess the crack stability and summarize several conclusions.
Fracture behaviour of a crack in a particle (silicate based) composite is studied. The crack propagation depends not only on mutual elastic mismatch of matrix and aggregate but also the influence of the interfacial transition zone (ITZ) between the matrix and the aggregate is discussed. Various combinations of materials and geometry of matrix, aggregate and ITZ can improve or degrade fracture properties of the composite. Extensive numerical simulations on a basic 3-point-bending cracked specimen via the finite element method are performed in order to analyze the stress field near the crack tip. Linear elastic fracture mechanics approach is utilized in order to assess the crack stability and summarize several conclusions.
Description
Citation
Procedia Engineering. 2017, vol. 2017, issue 190, p. 49-53.
https://www.sciencedirect.com/science/article/pii/S1877705817324463?via%3Dihub
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO