Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics

dc.contributor.authorPressacco, Fredericocs
dc.contributor.authorSangalli, Davidecs
dc.contributor.authorUhlíř, Vojtěchcs
dc.contributor.authorKutnyakhov, Dmytrocs
dc.contributor.authorArregi Uribeetxebarria, Jon Andercs
dc.contributor.authorAgustsson, Steinn Ymircs
dc.contributor.authorBrenner, Güntercs
dc.contributor.authorRedlin, Haraldcs
dc.contributor.authorHeber, Michaelcs
dc.contributor.authorVasilyev, Dmitrycs
dc.contributor.authorDemsar, Jurecs
dc.contributor.authorSchönhense, Gerdcs
dc.contributor.authorGatti, Matteocs
dc.contributor.authorMarini, Andreacs
dc.contributor.authorWurth, Wilfriedcs
dc.contributor.authorSirotti, Faustocs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.accessioned2021-12-06T06:55:40Z
dc.date.available2021-12-06T06:55:40Z
dc.date.issued2021-08-24cs
dc.description.abstractIn FeRh, it is possible to optically drive a phase transition between ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering. Here, using a combination of photoelectron spectroscopy and ab-initio calculations, the authors demonstrate the existence of a transient intermediate phase, explaining the delayed appearance of the FM phase. Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 +/- 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.en
dc.formattextcs
dc.format.extent5088-1-5088-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNATURE COMMUNICATIONS. 2021, vol. 12, issue 1, p. 5088-1-5088-8.en
dc.identifier.doi10.1038/s41467-021-25347-3cs
dc.identifier.issn2041-1723cs
dc.identifier.other173160cs
dc.identifier.urihttp://hdl.handle.net/11012/203056
dc.language.isoencs
dc.publisherNature Portfoliocs
dc.relation.ispartofNATURE COMMUNICATIONScs
dc.relation.urihttps://www.nature.com/articles/s41467-021-25347-3cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2041-1723/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMAGNETIC-MOMENTSen
dc.subjectSPIN DYNAMICSen
dc.subjectULTRAFASTen
dc.subjectSTATEen
dc.titleSubpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamicsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-173160en
sync.item.dbtypeVAVen
sync.item.insts2021.12.06 07:55:40en
sync.item.modts2021.12.03 12:12:46en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Nanomagnetismus a spintronikacs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467021253473.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Description:
s41467021253473.pdf