Experimental Investigation of Microcontroller-Based Acoustic Temperature Transducer Systems

dc.contributor.authorAl-Rawashdeh, Ayman Y.cs
dc.contributor.authorYounes, Tariq M.cs
dc.contributor.authorDalabeeh, Alics
dc.contributor.authorAl_Issa, Huthaifacs
dc.contributor.authorQawaqzeh, Mohamedcs
dc.contributor.authorMiroshnyk, Oleksandrcs
dc.contributor.authorKondratiev, Andriics
dc.contributor.authorKučera, Pavelcs
dc.contributor.authorPíštěk, Václavcs
dc.contributor.authorStepenko, Serhiics
dc.coverage.issue2cs
dc.coverage.volume23cs
dc.date.accessioned2023-03-21T07:55:11Z
dc.date.available2023-03-21T07:55:11Z
dc.date.issued2023-01-12cs
dc.description.abstractTemperature transducers are commonly used to monitor process parameters that are controlled by various types of industrial controllers. The purpose of this study is to design and model a simple microcontroller-based acoustic temperature transducer based on the variations of resonance conditions in a cylindrical resonance tube. The transducer’s operation is based on the generation of an acoustic standing wave in the free resonance mode of generation within a cylindrical resonance tube which is converted into a train of pulses using Schmitt trigger circuit. The frequency of the generated standing wave (i.e., the train of pulses) is measured by the Arduino Uno microcontroller, where a digital pin is used to acquire pulses that are counted using a build-in software function in an Arduino IDE environment. Experimental results are performed for three sizes of diameters to investigate the effect of the diameter of resonance tube on the obtained results. The maximum nonlinearity error according to Full-Scale Deflection (FSD) is about 2.3 percent, and the relative error of the transducer is evaluated using experimental findings and the regression model. The circuit simplicity and design of the suggested transducer, as well as the linearity of its measurements, are notable.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSENSORS. 2023, vol. 23, issue 2, p. 1-15.en
dc.identifier.doi10.3390/s23020884cs
dc.identifier.issn1424-8220cs
dc.identifier.orcid0000-0001-9652-9897cs
dc.identifier.orcid0000-0003-2863-0226cs
dc.identifier.other181424cs
dc.identifier.researcheridR-5127-2018cs
dc.identifier.researcheridAAK-6214-2020cs
dc.identifier.scopus7005045820cs
dc.identifier.scopus6508192662cs
dc.identifier.urihttp://hdl.handle.net/11012/209217
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSENSORScs
dc.relation.urihttps://www.mdpi.com/1424-8220/23/2/884cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1424-8220/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcoustic resonanceen
dc.subjecttemperature measurementen
dc.subjectstanding waveen
dc.subjectArduino Unoen
dc.titleExperimental Investigation of Microcontroller-Based Acoustic Temperature Transducer Systemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-181424en
sync.item.dbtypeVAVen
sync.item.insts2023.09.07 12:53:20en
sync.item.modts2023.09.07 12:14:24en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automobilního a dopravního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors2300884.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:
sensors2300884.pdf