Polymer pencil leads as a porous nanocomposite graphite material for electrochemical applications: The impact of chemical and thermal treatments

dc.contributor.authorTrnková, Libušecs
dc.contributor.authorTřísková, Ivetacs
dc.contributor.authorČechal, Jancs
dc.contributor.authorFarka, Zdeněkcs
dc.coverage.issue1cs
dc.coverage.volume126cs
dc.date.accessioned2021-08-13T10:52:55Z
dc.date.available2021-08-13T10:52:55Z
dc.date.issued2021-05-01cs
dc.description.abstractPencil graphite electrodes are a simple, disposable, and low-cost alternative to screen-printed graphite electrodes. In terms of stability and sensitivity, pencil electrodes often outperform conventional carbon ones. This paper discusses and emphasizes the superior properties of polymer pencil graphite electrodes (pPeGEs), which can be exploited in the electrochemical analysis of molecules, such as chlorides, whose signals are missing on common graphite electrodes. The chemical and structural behaviour of pencil leads after exposure to acids (HF, HNO3, HClO4) or organic solvents (CH3CN, CH3Cl) was monitored via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The electrochemical activity of pristine and treated pPeGEs was studied by the cyclic voltammetry (CV) responses of reversible redox probes [Fe(CN)6]3/4- and [Ru(NH3)6]3+/ 2+. XPS proved the presence of siloxanes in the surface matrix of the pencil leads; this finding relates to the hydrophobic surface character of the electrodes. SEM then provided images of the pencil surfaces with microplates and flakes and revealed the removal of siloxanes upon chemical treatment. The CVs of non-dried and dried pPeGEs displayed surface changes in the polymer matrix, accompanied by water loss. Our study shows that the pPeGE retains the character of a stable graphite sensor when exposed to acids and organic solvents, except for HF and chloroform. The discovered effects explain the electrochemical processes occurring on pPeGEs and can contribute to their application in electrochemical sensing and energy storage.en
dc.formattextcs
dc.format.extent1-7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationELECTROCHEMISTRY COMMUNICATIONS. 2021, vol. 126, issue 1, p. 1-7.en
dc.identifier.doi10.1016/j.elecom.2021.107018cs
dc.identifier.issn1873-1902cs
dc.identifier.other171711cs
dc.identifier.urihttp://hdl.handle.net/11012/200989
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofELECTROCHEMISTRY COMMUNICATIONScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1388248121001028?via%3Dihubcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-1902/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPolymer pencil graphite electrodeen
dc.subjectNanocompositeen
dc.subjectMicroporous electrodesen
dc.subjectSiloxanesen
dc.subjectRedox processes of chloridesen
dc.titlePolymer pencil leads as a porous nanocomposite graphite material for electrochemical applications: The impact of chemical and thermal treatmentsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-171711en
sync.item.dbtypeVAVen
sync.item.insts2021.08.13 12:52:55en
sync.item.modts2021.08.13 12:14:05en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površíchcs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1388248121001028main.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S1388248121001028main.pdf