Numerical and Experimental Evaluation of Structured Material for Use in Multi-scale Topology Optimization

Loading...
Thumbnail Image

Authors

Vaverka, Ondřej
Červinek, Ondřej
Jaroš, Jan
Koutný, Daniel
Pantělejev, Libor

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-VCH GmbH
Altmetrics

Abstract

Multi-scale topology optimization is a powerful tool for engineers seeking a design with minimum weight and maximum stiffness, using a structured material in the form of a lattice structure. Furthermore, the current trend is to combine multiple lattice topologies in one component to achieve the best possible response to local loading conditions while minimizing weight. Therefore, in this study, a numerical and experimental evaluation by compression tests in two directions is performed for six basic lattice topologies and two hypotheses are tested. The first hypothesis states that an additional weight saving of more than 30% can be achieved by a better choice of lattice topology. The second hypothesis is based on the manufacturing limitations of the Laser Powder Bed Fusion technology and the assumption that a favorable loading direction parallel to the building direction exists. The first hypothesis is only confirmed for loading in the direction parallel to the building direction and the second only for two lattice topologies. When both hypotheses are combined, the additional weight reduction of the multi-scale topology optimization result is 44.5% according to the numerical results and 32.7% according to the experimental verification.
Multi-scale topology optimization is a powerful tool for engineers seeking a design with minimum weight and maximum stiffness, using a structured material in the form of a lattice structure. Furthermore, the current trend is to combine multiple lattice topologies in one component to achieve the best possible response to local loading conditions while minimizing weight. Therefore, in this study, a numerical and experimental evaluation by compression tests in two directions is performed for six basic lattice topologies and two hypotheses are tested. The first hypothesis states that an additional weight saving of more than 30% can be achieved by a better choice of lattice topology. The second hypothesis is based on the manufacturing limitations of the Laser Powder Bed Fusion technology and the assumption that a favorable loading direction parallel to the building direction exists. The first hypothesis is only confirmed for loading in the direction parallel to the building direction and the second only for two lattice topologies. When both hypotheses are combined, the additional weight reduction of the multi-scale topology optimization result is 44.5% according to the numerical results and 32.7% according to the experimental verification.

Description

Citation

Advanced engineering materials. 2024, vol. 26, issue 13, p. 1-10.
https://doi.org/10.1002/adem.202400127

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO