Predictive Model of the ENSO Phenomenon Based on Regression Trees

Loading...
Thumbnail Image

Authors

Mendoza Uribe, Indalecio

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Automation and Computer Science, Brno University of Technology

ORCID

Altmetrics

Abstract

In this work, the supervised machine learning technique was applied to develop a predictive model of the phase of the El Niño-Southern Oscillation (ENSO) phenomenon. Regression trees were specifically used by means of the Scikit-Learn library of the Python programming language. Data from the period 1950-2022 were used as training and test. The performance of the predictive model was validated using three continuous type error measurement metrics: Mean Absolute Error, Maximum Error and Root Mean Square Root. The results indicate that with a greater number of training data the model improves its performance, with a tendency to decrease the error in forecasts. Which starts for the year 1953 with errors of 0.77, 1.41 and 0.75 for MAE, ME and RMSE respectively, ending for the year 2022 with errors of 0.28, 0.72 and 0.13 for the same metrics. It is concluded that, based on the results, the developed model is consistent and reliable for ENSO phase forecasts in a 12-month window.

Description

Citation

Mendel. 2023 vol. 29, č. 1, s. 7-14. ISSN 1803-3814
https://mendel-journal.org/index.php/mendel/article/view/210

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license
Citace PRO