Effect of microstructure on machinability of extruded and conventional H13 tool steel

Loading...
Thumbnail Image

Authors

Kolomý, Štěpán
Malý, Martin
Doubrava, Marek
Sedlák, Josef
Zouhar, Jan
Čupera, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER SCI LTD
Altmetrics

Abstract

H13 tool steel samples were fabricated using material extrusion to explore their machinability, offering a promising alternative to laser powder bed fusion for producing complex parts like moulds and cores. Three material states were studied: as-built (AB), heat-treated additively manufactured (HTAM), and heat-treated wrought (HTW). Machining tests focused on cutting speed, feed per tooth, and cooling conditions (dry/flood), while tracking their effect on cutting forces, surface roughness, hardness, microstructure, and residual stresses. Heat treatment significantly reduced porosity (similar to 45 % decrease between AB and HTAM) and transformed the microstructure to full martensite, increasing hardness and cutting forces. Interestingly, the HTAM sample showed lower cutting forces than HTW-by 23.7 % in dry and 24.5 % under flood cooling. HTW generally produced smoother surfaces at lower cutting parameters, but its roughness increased at higher conditions compared to HTAM. The softest AB sample experienced the highest surface hardening (similar to 12 %) when machined at low cutting speeds, while the HTW sample showed most uniform plastic deformation, extending up to similar to 50 mu m below the surface. Dominantly tensile residual stresses were measured in HTW, while AB and HTAM showed mainly compressive residual stresses under dry conditions. This study highlights viability of extruded H13 for industrial use, particularly in mould applications.
H13 tool steel samples were fabricated using material extrusion to explore their machinability, offering a promising alternative to laser powder bed fusion for producing complex parts like moulds and cores. Three material states were studied: as-built (AB), heat-treated additively manufactured (HTAM), and heat-treated wrought (HTW). Machining tests focused on cutting speed, feed per tooth, and cooling conditions (dry/flood), while tracking their effect on cutting forces, surface roughness, hardness, microstructure, and residual stresses. Heat treatment significantly reduced porosity (similar to 45 % decrease between AB and HTAM) and transformed the microstructure to full martensite, increasing hardness and cutting forces. Interestingly, the HTAM sample showed lower cutting forces than HTW-by 23.7 % in dry and 24.5 % under flood cooling. HTW generally produced smoother surfaces at lower cutting parameters, but its roughness increased at higher conditions compared to HTAM. The softest AB sample experienced the highest surface hardening (similar to 12 %) when machined at low cutting speeds, while the HTW sample showed most uniform plastic deformation, extending up to similar to 50 mu m below the surface. Dominantly tensile residual stresses were measured in HTW, while AB and HTAM showed mainly compressive residual stresses under dry conditions. This study highlights viability of extruded H13 for industrial use, particularly in mould applications.

Description

Citation

MATERIALS & DESIGN. 2025, vol. 254, issue June, p. 1-21.
https://www.sciencedirect.com/science/article/pii/S0264127525005520

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO