A method of rotary engine performance prediction

Loading...
Thumbnail Image

Authors

Drbal, Milan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Silesian University of Technology
Altmetrics

Abstract

The rotary engine mainly developed for the automotive industry by the NSU corporation is currently used in unmanned aircraft, transportable generators and small watercraft. In the early stage of the engine development, the simulation of the performance characteristics is advisable. The 3D CFD engine simulation is highly expensive in terms of CPU time demand and requires a high level of optimisation to provide adequate data. This method can be used later in the development and fine engine tuning. For the design of the prototype 1D, simulation is being used as a tool to compare various designs of the engine. While the current commercially available software (GT-suite, Ricardo Wave, etc.) is being improved marginally, the functionality of the software is being tested on the piston reciprocating engines. This paper explores the possibility of the algorithms of such a software to be used on the rotary engine thermodynamic simulation and provides an approach to design a simulation model that can be solved by the so tware to predict the performance characteristics of the engine prototype.
The rotary engine mainly developed for the automotive industry by the NSU corporation is currently used in unmanned aircraft, transportable generators and small watercraft. In the early stage of the engine development, the simulation of the performance characteristics is advisable. The 3D CFD engine simulation is highly expensive in terms of CPU time demand and requires a high level of optimisation to provide adequate data. This method can be used later in the development and fine engine tuning. For the design of the prototype 1D, simulation is being used as a tool to compare various designs of the engine. While the current commercially available software (GT-suite, Ricardo Wave, etc.) is being improved marginally, the functionality of the software is being tested on the piston reciprocating engines. This paper explores the possibility of the algorithms of such a software to be used on the rotary engine thermodynamic simulation and provides an approach to design a simulation model that can be solved by the so tware to predict the performance characteristics of the engine prototype.

Description

Citation

Scientific Journal of Silesian University of Technology-Series Transport. 2020, vol. 108, issue 1, p. 37-43.
http://sjsutst.polsl.pl/archives/2020/vol108/037_SJSUTST108_2020_Drbal.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO