Cardiac Arrhythmia Prediction by Adaptive Analysis via Bluetooth

dc.contributor.authorRodrguez-Jorge, Ricardo
dc.contributor.authorBila, Jiri
dc.coverage.issue2cs
dc.coverage.volume26cs
dc.date.accessioned2021-08-10T11:28:32Z
dc.date.available2021-08-10T11:28:32Z
dc.date.issued2020-12-21cs
dc.description.abstractIn this work, the development of a data acquisition system for adaptive monitoring based on a dynamic quadratic neural unit is presented. Acquisition of the continuous signal is achieved with the BITalino biomedical data acquisition card. The system is trained sample-by-sample with a real time recurrent learning method. Then, possible cardiac arrhythmia is predicted by implementing the adaptive monitoring in real time to recognize patterns that predict cardiac arrhythmia up to 1 second in advance. For the evaluation of the interface, tests are performed using the obtained signal in real timeen
dc.formattextcs
dc.format.extent29-38cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2020 vol. 26, č. 2, s. 29-38. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2020.2.029en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/200930
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/117cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectDynamic quadratic neural uniten
dc.subjectrecurrent learningen
dc.subjectadaptive monitoringen
dc.subjectbiomedical data acquisitionen
dc.subjectcardiac arrhythmiaen
dc.subjectpredictionen
dc.titleCardiac Arrhythmia Prediction by Adaptive Analysis via Bluetoothen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
117-Article Text-234-2-10-20201221.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
Collections