Concept drift detection in metabolomics-based predictions under cold-stress conditions in plants

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorLuskova, Tereza
dc.contributor.authorWeckwerth, Wolfram
dc.contributor.authorSchwarzerova, Jana
dc.date.accessioned2025-07-30T10:00:58Z
dc.date.available2025-07-30T10:00:58Z
dc.date.issued2025cs
dc.description.abstractIn recent years, there has been a significant surge in the use of prediction models. These models typically assume that input data is stationary; however, much of the data we encounter is dynamic in nature. Among the most dynamic data are metabolomics, which change over time. One common challenge with time-varying data is the occurrence of concept drift. Concept drift can degrade the accuracy and reliability of prediction models, making it a key issue to address. Despite its negative impact, concept drift can also be leveraged to uncover hidden confounding factors in the data. The main goal of this study is to detect concept drift in metabolite concentrations across different ecotypes of Arabidopsis thaliana under varying growth conditions. The study is divided into two parts: first, we apply different predictive regressors to metabolomics data, and second, we use these models to detect concept drift. Our focus lies in identifying potential confounding factors that may influence the prediction of relative growth rates in plants.en
dc.formattextcs
dc.format.extent27-30cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 27-30. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255291
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectConcept driften
dc.subjectMachine learningen
dc.subjectMetabolomicsen
dc.subjectPlant stressen
dc.subjectPredictive modelingen
dc.titleConcept drift detection in metabolomics-based predictions under cold-stress conditions in plantsen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
27-Luskova.pdf
Size:
960.75 KB
Format:
Adobe Portable Document Format