Comparative Analysis of Pitch Detection Algorithms for Machine Learning Supported Parkinson’s Disease Diagnosis

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorLadislav, Richard
dc.contributor.authorGaláž, Zoltán
dc.date.accessioned2025-07-30T10:00:54Z
dc.date.available2025-07-30T10:00:54Z
dc.date.issued2025cs
dc.description.abstractParkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, including hypokinetic dysarthria (HD), a speech disorder affecting prosody. Early detection of PD through speech analysis offers a promising, non-invasive diagnostic approach. This study evaluates five pitch detection algorithms—PRAAT, YIN, PYIN, RAPT, and SWIPE’—to extract fundamental frequency-based features from the PARCZ speech database. The extracted features, including relative F 0, standard deviation and various jitter measures, are used to train and evaluate three binary classifiers: Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF). The classifiers are optimized using a stratified crossvalidation approach, with balanced accuracy as the primary metric. Results indicate that while pitch-based features alone are insufficient for clinically accurate PD diagnosis, certain classifiers and pitch detection methods show potential in aiding early detection. Future work should incorporate a broader set of speech parameters to enhance diagnostic precision.en
dc.formattextcs
dc.format.extent105-110cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 105-110. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255254
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectParkinson’s diseaseen
dc.subjecthypokinetic dysarthriaen
dc.subjectpitch trackingen
dc.subjectfundamental frequencyen
dc.subjectjitteren
dc.subjectmachine learningen
dc.subjectbinary classificationen
dc.subjectspeech analysisen
dc.subjectPRAATen
dc.subjectYINen
dc.subjectPYINen
dc.subjectRAPTen
dc.subjectSWIPE’en
dc.subjectlogistic regressionen
dc.subjectsupport vector machineen
dc.subjectrandom forest.en
dc.titleComparative Analysis of Pitch Detection Algorithms for Machine Learning Supported Parkinson’s Disease Diagnosisen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
105-Ladislav.pdf
Size:
749.82 KB
Format:
Adobe Portable Document Format