Comparative Analysis of Pitch Detection Algorithms for Machine Learning Supported Parkinson’s Disease Diagnosis
| but.event.date | 29.04.2025 | cs |
| but.event.title | STUDENT EEICT 2025 | cs |
| dc.contributor.author | Ladislav, Richard | |
| dc.contributor.author | Galáž, Zoltán | |
| dc.date.accessioned | 2025-07-30T10:00:54Z | |
| dc.date.available | 2025-07-30T10:00:54Z | |
| dc.date.issued | 2025 | cs |
| dc.description.abstract | Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, including hypokinetic dysarthria (HD), a speech disorder affecting prosody. Early detection of PD through speech analysis offers a promising, non-invasive diagnostic approach. This study evaluates five pitch detection algorithms—PRAAT, YIN, PYIN, RAPT, and SWIPE’—to extract fundamental frequency-based features from the PARCZ speech database. The extracted features, including relative F 0, standard deviation and various jitter measures, are used to train and evaluate three binary classifiers: Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF). The classifiers are optimized using a stratified crossvalidation approach, with balanced accuracy as the primary metric. Results indicate that while pitch-based features alone are insufficient for clinically accurate PD diagnosis, certain classifiers and pitch detection methods show potential in aiding early detection. Future work should incorporate a broader set of speech parameters to enhance diagnostic precision. | en |
| dc.format | text | cs |
| dc.format.extent | 105-110 | cs |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.citation | Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 105-110. ISBN 978-80-214-6321-9 | cs |
| dc.identifier.isbn | 978-80-214-6321-9 | |
| dc.identifier.uri | https://hdl.handle.net/11012/255254 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.relation.ispartof | Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers | en |
| dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdf | cs |
| dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights.access | openAccess | en |
| dc.subject | Parkinson’s disease | en |
| dc.subject | hypokinetic dysarthria | en |
| dc.subject | pitch tracking | en |
| dc.subject | fundamental frequency | en |
| dc.subject | jitter | en |
| dc.subject | machine learning | en |
| dc.subject | binary classification | en |
| dc.subject | speech analysis | en |
| dc.subject | PRAAT | en |
| dc.subject | YIN | en |
| dc.subject | PYIN | en |
| dc.subject | RAPT | en |
| dc.subject | SWIPE’ | en |
| dc.subject | logistic regression | en |
| dc.subject | support vector machine | en |
| dc.subject | random forest. | en |
| dc.title | Comparative Analysis of Pitch Detection Algorithms for Machine Learning Supported Parkinson’s Disease Diagnosis | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
