Segmentation of Chest X-Ray Images Using U-Net Model

dc.contributor.authorKamil, Mohammed Y.
dc.contributor.authorHashem, Sahar A.
dc.coverage.issue2cs
dc.coverage.volume28cs
dc.date.accessioned2023-01-13T06:21:06Z
dc.date.available2023-01-13T06:21:06Z
dc.date.issued2022-12-20cs
dc.description.abstractMedical imaging, such as chest X-rays, gives an acceptable image of lung functions.  Manipulating these images by a radiologist is difficult, thus delaying the diagnosis. Coronavirus is a disease that affects the lung area. Lung segmentation has a significant function in assessing lung disorders. The process of segmentation has seen widespread use of deep learning algorithms. The U-Net is one of the most significant semantic segmentation frameworks for a convolutional neural network. In this paper, the proposed U-Net architecture is evaluated on 565 datasets divided into 500 training images and 65 validation images, For chest X-ray. The findings of the experiments demonstrate that the suggested strategy successfully achieved competitive outcomes with 91.47% and 89.18% accuracy, 0.7494 and 0.7480 IoU, 19.23% and 26.11% loss for training and validation images, respectively.en
dc.formattextcs
dc.format.extent49-53cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2022 vol. 28, č. 2, s. 49-53. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2022.2.049en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/208747
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/192cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectU-Neten
dc.subjectSegmentationen
dc.subjectDeep learningen
dc.subjectCoronavirusen
dc.subjectlungen
dc.subjectX-rayen
dc.subjectCNNen
dc.titleSegmentation of Chest X-Ray Images Using U-Net Modelen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
192-Article Text-502-2-10-20221220.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Collections