Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition

Loading...
Thumbnail Image

Authors

Narimisa, Mehrnoush
Krčma, František
Onyshchenko, Yuliia
Kozáková, Zdenka
Morent, Rino
De Geyter, Nathalie

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

In this work, the potential of a microwave (MW)induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate nonuniform monomer distribution near the substrate and the dependency of the deposition area on the monomercontaining gas flow rate. A nonhomogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C–O/C–C ratio and a higher wettability of the deposited coatings.
In this work, the potential of a microwave (MW)induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate nonuniform monomer distribution near the substrate and the dependency of the deposition area on the monomercontaining gas flow rate. A nonhomogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C–O/C–C ratio and a higher wettability of the deposited coatings.

Description

Citation

Polymers. 2020, vol. 12, issue 2, p. 1-23.
https://www.mdpi.com/2073-4360/12/2/354

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO