Direct Gene Detection in Raw Nanopore Signals Using Transformer Neural Networks

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorVorochta, Jevhenij
dc.contributor.authorVítková, Helena
dc.contributor.authorJakubíček, Roman
dc.date.accessioned2025-07-30T10:03:09Z
dc.date.available2025-07-30T10:03:09Z
dc.date.issued2025cs
dc.description.abstractNanopore sequencing has transformed genomics by enabling real-time analysis of DNA and RNA in a compact, cost-effective device. However, conventional workflows require a separate basecalling step to convert raw electrical signals into nucleotide sequences, which can introduce errors and delay downstream analyses such as gene detection. Here, we present a novel approach that bypasses basecalling by directly analyzing raw nanopore signals using a transformer-based neural network. By adapting a model originally designed for ECG classification, we developed a system capable of detecting specific antibiotic resistance genes in Klebsiella pneumoniae samples. Raw signals were preprocessed through downsampling, z-normalization, and segmentation into 5,000-sample windows, yielding a dataset of 13,080 labeled segments. Experimental results demonstrate that our model effectively distinguishes gene-containing segments from non-target signals, achieving up to 80% accuracy in the “no target gene” category. In contrast, accuracy for other gene categories was lower, indicating that further optimization of the model is required. This direct-signal approach not only reduces the computational burden associated with basecalling but also streamlines the workflow, promising faster diagnostic turnaround times. These findings provide a significant step toward integrating advanced deep learning methods with nanopore sequencing for rapid, on-site genomic analysis and have potential applications in clinical diagnostics and epidemiological surveillance.en
dc.formattextcs
dc.format.extent13-16cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 13-16. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.13
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255333
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectNanopore sequencingen
dc.subjecttransformer neural networksen
dc.subjectgene detectionen
dc.subjectantibiotic resistanceen
dc.subjectbioinformaticsen
dc.subjectdeep learningen
dc.titleDirect Gene Detection in Raw Nanopore Signals Using Transformer Neural Networksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13-Vorochta.pdf
Size:
669.41 KB
Format:
Adobe Portable Document Format