Analysis and Detection of PWS Malware

but.event.date25.04.2023cs
but.event.titleSTUDENT EEICT 2023cs
dc.contributor.authorBlažek, Jan
dc.contributor.authorKřoustek, Jakub
dc.contributor.authorDzurenda, Petr
dc.date.accessioned2023-07-17T05:57:33Z
dc.date.available2023-07-17T05:57:33Z
dc.date.issued2023cs
dc.description.abstractCyberdefense became important, especially duringthe last decade. The rapid growth of information technologiescaused a significant increase in cyber attacks and threats onthe Internet. Malware analysis forms a critical component ofcyberdefense mechanisms. In this article, we study the issue ofmalicious code and its various types, with a specific focus on thetype known as PassWord Stealers (PWS). To do so, we deployedseveral methods of analyzing binary executable code, such asstatic and dynamic analysis, and sandboxing. We analyze 11recently discovered malware families. From that, we discovered3 new strains of malware, namely SevenStealer, NeedleDropper,and AtlantidaStealer. Furthermore, we have created appropriatedetection rules for all of these malware, which have improvedthe detection capabilities of Avast anti-virus (AV) softwareworldwide. At the end of this article, we present the resultingdata illustrating the spread of analyzed malware in the user baseof the Avast company.en
dc.formattextcs
dc.format.extent69-72cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 69-72. ISBN 978-80-214-6154-3cs
dc.identifier.doi10.13164/eeict.2023.69
dc.identifier.isbn978-80-214-6154-3
dc.identifier.issn2788-1334
dc.identifier.urihttp://hdl.handle.net/11012/210656
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectYARAen
dc.subjectMalwareen
dc.subjectPassword Stealeren
dc.subjectReverseEngineeringen
dc.subjectInfo Stealeren
dc.subjectStatic Analysisen
dc.subjectDynamic Analysis,Cyber Defenceen
dc.titleAnalysis and Detection of PWS Malwareen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
69_EEICT_selected.pdf
Size:
505.13 KB
Format:
Adobe Portable Document Format
Description: