Mixed mode I/III fatigue behaviour of Polyetheretherketone

Abstract

In this work, the fatigue behaviour of Polyetheretherketone (PEEK) under tensile (mode I) and out of plane shear (mode III) loading was examined by using razor blade notched cylindrical bars. By varying the applied mode I and mode III loadings, fatigue fracture curves of pure mode I and mixed mode I/III were established. The aim was to find a suitable method to describe the behaviour of both pure mode I and mixed mode I/III loading via a singular equivalent stress intensity factor. This was found possible by increasing the coefficient of the mode III contribution by more than 500 % compared to previous work on other thermoplastic materials. This significant change of the mode III contribution was mainly attributed to the different thermo-mechanical state of PEEK at the testing temperature of 23 degrees C, as well as the good friction properties of PEEK which leads to a transferal of mode III contributions to mode I contributions due to crack flank sliding of the formed factory roof formations on the fracture surfaces.
In this work, the fatigue behaviour of Polyetheretherketone (PEEK) under tensile (mode I) and out of plane shear (mode III) loading was examined by using razor blade notched cylindrical bars. By varying the applied mode I and mode III loadings, fatigue fracture curves of pure mode I and mixed mode I/III were established. The aim was to find a suitable method to describe the behaviour of both pure mode I and mixed mode I/III loading via a singular equivalent stress intensity factor. This was found possible by increasing the coefficient of the mode III contribution by more than 500 % compared to previous work on other thermoplastic materials. This significant change of the mode III contribution was mainly attributed to the different thermo-mechanical state of PEEK at the testing temperature of 23 degrees C, as well as the good friction properties of PEEK which leads to a transferal of mode III contributions to mode I contributions due to crack flank sliding of the formed factory roof formations on the fracture surfaces.

Description

Citation

ENGINEERING FRACTURE MECHANICS. 2025, vol. 320, issue 5, p. 1-17.
https://www.sciencedirect.com/science/article/pii/S0013794425002589

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO