Matlab Implementation Of Multilayer Perceptron For Bearing Faults Classification

Loading...
Thumbnail Image

Date

Authors

Doseděl, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

This paper deals with implementation of multilayer perceptron neural network (NN) forbearing faults classification. Neural network has been created from scratch as an M-script with backpropagation learning algorithm also, but without using advanced MATLAB packages. Public availablebearing dataset from CaseWestern Reserve University has been used for both training and testingphase, as well as for the final classification process. Problem with sparse input data for training thenetwork has also been addressed. This relatively simple and small neural network is capable to classifythe failures of a bearing with very low error rate.

Description

Citation

Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 161-165. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO