Scaling Type-Based Points-to Analysis with Saturation

Loading...
Thumbnail Image

Authors

Wimmer, Christian
Stancu, Condrut
Kozák, David
Wuerthinger, Thomas

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ACM
Altmetrics

Abstract

Designing a whole-program static analysis requires trade-offs between precision and scalability. While a context-insensitive points-to analysis is often considered a good compromise, it still has non-linear complexity that leads to scalability problems when analyzing large applications. On the other hand, rapid type analysis scales well but lacks precision. We use saturation in a context-insensitive type-based points-to analysis to make it as scalable as a rapid type analysis, while preserving most of the precision of the points-to analysis. With saturation, the points-to analysis only propagates small points-to sets for variables. If a variable can have more values than a certain threshold, the variable and all its usages are considered saturated and no longer analyzed.<br><br>Our implementation in the points-to analysis of GraalVM Native Image, a closed-world approach to build standalone binaries for Java applications, shows that saturation allows GraalVM Native Image to analyze large Java applications with hundreds of thousands of methods in less than two minutes.
Designing a whole-program static analysis requires trade-offs between precision and scalability. While a context-insensitive points-to analysis is often considered a good compromise, it still has non-linear complexity that leads to scalability problems when analyzing large applications. On the other hand, rapid type analysis scales well but lacks precision. We use saturation in a context-insensitive type-based points-to analysis to make it as scalable as a rapid type analysis, while preserving most of the precision of the points-to analysis. With saturation, the points-to analysis only propagates small points-to sets for variables. If a variable can have more values than a certain threshold, the variable and all its usages are considered saturated and no longer analyzed.<br><br>Our implementation in the points-to analysis of GraalVM Native Image, a closed-world approach to build standalone binaries for Java applications, shows that saturation allows GraalVM Native Image to analyze large Java applications with hundreds of thousands of methods in less than two minutes.

Description

Citation

Proceedings of the ACM on Programming Languages-PACMPL. 2024, vol. 8, issue PLDI, p. 990-1013.
https://dl.acm.org/doi/pdf/10.1145/3656417

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO