Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials

Loading...
Thumbnail Image

Authors

Dallaev, Rashid
Pisarenko, Tatiana
Papež, Nikola
Holcman, Vladimír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The rapid growth and evolution of solar panel technology have been driven by continuous advancements in materials science. This review paper provides a comprehensive overview of the diverse range of materials employed in modern solar panels, elucidating their roles, properties, and contributions to overall performance. The discussion encompasses both traditional crystalline silicon-based panels and emerging thin-film technologies. A detailed examination of photovoltaic materials, including monocrystalline and polycrystalline silicon as well as alternative materials such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and emerging perovskite solar cells, is presented. Furthermore, the impact of transparent conductive materials, encapsulation polymers, and antireflective coatings on solar panel efficiency and durability is explored. The review delves into the synergistic interplay between material properties, manufacturing processes, and environmental considerations. Through a comprehensive
The rapid growth and evolution of solar panel technology have been driven by continuous advancements in materials science. This review paper provides a comprehensive overview of the diverse range of materials employed in modern solar panels, elucidating their roles, properties, and contributions to overall performance. The discussion encompasses both traditional crystalline silicon-based panels and emerging thin-film technologies. A detailed examination of photovoltaic materials, including monocrystalline and polycrystalline silicon as well as alternative materials such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and emerging perovskite solar cells, is presented. Furthermore, the impact of transparent conductive materials, encapsulation polymers, and antireflective coatings on solar panel efficiency and durability is explored. The review delves into the synergistic interplay between material properties, manufacturing processes, and environmental considerations. Through a comprehensive

Description

Citation

Materials. 2023, vol. 16, issue 17, p. 1-32.
https://www.mdpi.com/1996-1944/16/17/5839

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO