Iterative system of nabla fractional difference equations with two-point boundary conditions

Loading...
Thumbnail Image

Date

Authors

Khuddush, Mahammad
Prasad, K. Rajendra

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky

ORCID

Altmetrics

Abstract

In this paper, we consider the nabla fractional order boundary value prob- lem ∇ß−1 n0 [∇zj (t)] + φ(t)gj (zj+1(t)) = 0, t ∈ Nn n0+2, 1 < ß < 2, azj (n0 + 1) − b∇zj (n0 + 1) = 0, czj (n) + d∇zj (n) = 0, where j = 1, 2, . . . , N , zN +1 = z1, N ∈ N, n0, n ∈ R with n − n0 ∈ N and de- rive sufficient conditions for the existence of positive solutions by an application of Krasnoselskii’s fixed point theorem on a Banach space. Later, we derive suffi- cient conditions for the existence of a unique solution by applying Rus’s contraction mapping theorem in a metric space, where two metrics are employed.

Description

Citation

Mathematics for Applications. 2022 vol. 11, č. 1, s. 57-74. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/11_1/ma_11_1_khuddush_prasad_final.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO