Optimizing Indoor Microclimate and Thermal Comfort Through Sorptive Active Elements: Stabilizing Humidity for Healthier Living Spaces

dc.contributor.authorPeterková, Jitkacs
dc.contributor.authorZach, Jiřícs
dc.contributor.authorNovák, Vítězslavcs
dc.contributor.authorKorjenic, Azracs
dc.contributor.authorSulejmanovski, Abdulahcs
dc.contributor.authorSesto, Eldiracs
dc.coverage.issue11cs
dc.coverage.volume14cs
dc.date.accessioned2025-04-11T07:56:04Z
dc.date.available2025-04-11T07:56:04Z
dc.date.issued2024-11-29cs
dc.description.abstractThis paper investigates the potential use of natural materials and elements for stabilizing indoor humidity levels, focusing on creating healthier living environments in buildings. Unstable indoor microclimates, particularly extreme humidity levels, can negatively affect human health by causing issues such as condensation, mold growth, or dry mucous membranes. In this work, we explore how sorptive materials can maintain indoor humidity within the optimal range of 40-50%. The aim is to identify optimal solutions for moisture control using passive elements, such as unfired ceramic components, which demonstrate high sorption activity within the 35-55% relative humidity range. These elements can effectively absorb moisture from, or release it back into, the indoor environment as needed. Five clay types based on different clay minerals were analyzed in the research in order to assess how their structures influence moisture adsorption behavior. These elements can be combined with green/active elements and standard measures, such as ventilation or targeted room air exchange, to improve indoor humidity regulation. The evaluation of the results so far indicates that the use of clay-based elements in the interior offers a sustainable and natural approach to maintaining optimal indoor microclimate conditions. The slab elements from all 5 clay formulations investigated effectively support indoor humidity stabilization.en
dc.formattextcs
dc.format.extent1-20cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationBuildings. 2024, vol. 14, issue 11, p. 1-20.en
dc.identifier.doi10.3390/buildings14123836cs
dc.identifier.issn2075-5309cs
dc.identifier.orcid0000-0002-5545-4515cs
dc.identifier.orcid0000-0002-0426-8317cs
dc.identifier.orcid0000-0002-9204-5884cs
dc.identifier.other193799cs
dc.identifier.researcheridAFY-0517-2022cs
dc.identifier.researcheridCAI-1424-2022cs
dc.identifier.scopus46661180400cs
dc.identifier.scopus46661500800cs
dc.identifier.urihttps://hdl.handle.net/11012/250882
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofBuildingscs
dc.relation.urihttps://doi.org/10.3390/buildings14123836cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2075-5309/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectnon-fired ceramicen
dc.subjectclay mineralsen
dc.subjectmicroclimateen
dc.subjectsorption/desorption of moistureen
dc.subjectmoisture buffering capacityen
dc.subjectinternal environment of buildingsen
dc.titleOptimizing Indoor Microclimate and Thermal Comfort Through Sorptive Active Elements: Stabilizing Humidity for Healthier Living Spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GF/GF23-06542Kcs
sync.item.dbidVAV-193799en
sync.item.dbtypeVAVen
sync.item.insts2025.04.11 09:56:04en
sync.item.modts2025.04.11 09:33:27en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav technologie stavebních hmot a dílcůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
buildings1403836v2.pdf
Size:
12.19 MB
Format:
Adobe Portable Document Format
Description:
file buildings1403836v2.pdf