Enhancing Stability of Microwave-Synthesized Cs<sub>2</sub>Sn<sub>x</sub>Ti<sub>1-x</sub>Br<sub>6</sub> Perovskite by Cation Mixing
Loading...
Date
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
WILEY-V C H VERLAG GMBH
ORCID
Altmetrics
Abstract
The double-perovskite material Cs2TiBr6 shows excellent photovoltaic potential, making it a promising alternative to lead-based materials. However, its high susceptibility to degradation in air has raised concerns about its practical application. This study introduces an interesting synthesis approach that significantly enhances the stability of Cs2TiBr6 powder. We implemented a gradual cation exchange process by substituting Ti4+ with Sn4+ in the efficient microwave-assisted synthesis method, developing a double perovskite Cs2SnxTi1-xBr6 type. A systematic study of increasing concentration of Sn4+ in Cs2TiBr6 perovskite has been performed to analyze the effect of Sn-doping degree on the chemical and thermal stability of the material and the optical features in both nitrogen and ambient atmospheres, significantly increasing the stability of the material in the air for over a week. Furthermore, introducing Sn4+ results in a more uniform polygonal crystal morphology of the powders and a slight band gap broadening. We show that microwave-assisted synthesis is highly efficient and cost-effective in producing more sustainable lead-free perovskite materials with enhanced stability and desirable electrical characteristics. This work suggests a promising method for synthesizing perovskite materials, opening new routes for scientific research and applications.
The double-perovskite material Cs2TiBr6 shows excellent photovoltaic potential, making it a promising alternative to lead-based materials. However, its high susceptibility to degradation in air has raised concerns about its practical application. This study introduces an interesting synthesis approach that significantly enhances the stability of Cs2TiBr6 powder. We implemented a gradual cation exchange process by substituting Ti4+ with Sn4+ in the efficient microwave-assisted synthesis method, developing a double perovskite Cs2SnxTi1-xBr6 type. A systematic study of increasing concentration of Sn4+ in Cs2TiBr6 perovskite has been performed to analyze the effect of Sn-doping degree on the chemical and thermal stability of the material and the optical features in both nitrogen and ambient atmospheres, significantly increasing the stability of the material in the air for over a week. Furthermore, introducing Sn4+ results in a more uniform polygonal crystal morphology of the powders and a slight band gap broadening. We show that microwave-assisted synthesis is highly efficient and cost-effective in producing more sustainable lead-free perovskite materials with enhanced stability and desirable electrical characteristics. This work suggests a promising method for synthesizing perovskite materials, opening new routes for scientific research and applications.
The double-perovskite material Cs2TiBr6 shows excellent photovoltaic potential, making it a promising alternative to lead-based materials. However, its high susceptibility to degradation in air has raised concerns about its practical application. This study introduces an interesting synthesis approach that significantly enhances the stability of Cs2TiBr6 powder. We implemented a gradual cation exchange process by substituting Ti4+ with Sn4+ in the efficient microwave-assisted synthesis method, developing a double perovskite Cs2SnxTi1-xBr6 type. A systematic study of increasing concentration of Sn4+ in Cs2TiBr6 perovskite has been performed to analyze the effect of Sn-doping degree on the chemical and thermal stability of the material and the optical features in both nitrogen and ambient atmospheres, significantly increasing the stability of the material in the air for over a week. Furthermore, introducing Sn4+ results in a more uniform polygonal crystal morphology of the powders and a slight band gap broadening. We show that microwave-assisted synthesis is highly efficient and cost-effective in producing more sustainable lead-free perovskite materials with enhanced stability and desirable electrical characteristics. This work suggests a promising method for synthesizing perovskite materials, opening new routes for scientific research and applications.
Description
Citation
ChemSusChem. 2025, vol. 18, issue 9, p. 1-8.
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402073
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402073
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

