Accelerating the Laser-Induced Phase Transition in Nanostructured FeRh via Plasmonic Absorption

dc.contributor.authorMattern, Maximiliancs
dc.contributor.authorPudell, Jan Etiennecs
dc.contributor.authorArregi Uribeetxebarria, Jon Andercs
dc.contributor.authorZlámal, Jakubcs
dc.contributor.authorKalousek, Radekcs
dc.contributor.authorUhlíř, Vojtěchcs
dc.contributor.authorRössle, Mattics
dc.contributor.authorBargheer, Matiascs
dc.coverage.issue32cs
dc.coverage.volume34cs
dc.date.accessioned2025-03-25T17:40:13Z
dc.date.available2025-03-25T17:40:13Z
dc.date.issued2024-08-01cs
dc.description.abstractBy ultrafast x-ray diffraction (UXRD), it is shown that the laser-induced magnetostructural phase transition in FeRh nanoislands proceeds faster and more complete than in continuous films. An intrinsic 8 ps timescale is observed for the nucleation of ferromagnetic (FM) domains in the optically excited fraction of both types of samples. For the continuous film, the substrate-near regions are not directly exposed to light and are only slowly transformed to the FM state after heating above the transition temperature via near-equilibrium heat transport. Numerical modeling of the absorption in the investigated nanoislands reveals a strong plasmonic contribution near the FeRh/MgO interface. The larger absorption and the optical excitation of the electrons in nearly the entire volume of the nanoislands enables a rapid phase transition throughout the entire volume at the intrinsic nucleation timescale. Nanostructuring FeRh thin films by solid state dewetting make the laser-induced antiferromagnetic to ferromagnetic phase transition more efficient and speed the switching up to the intrinsic timescale. Ultrafast x-ray diffraction experiments directly measure the structural order parameter averaged over the entire film. Finite element modeling reveals the enhanced plasmonic light absorption near the substrate as the crucial factor. imageen
dc.formattextcs
dc.format.extent10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS. 2024, vol. 34, issue 32, 10 p.en
dc.identifier.doi10.1002/adfm.202313014cs
dc.identifier.issn1616-301Xcs
dc.identifier.orcid0000-0002-7376-2757cs
dc.identifier.orcid0000-0003-0689-0211cs
dc.identifier.orcid0000-0003-2612-8259cs
dc.identifier.orcid0000-0002-0512-6329cs
dc.identifier.other188690cs
dc.identifier.researcheridM-9810-2016cs
dc.identifier.researcheridD-8051-2012cs
dc.identifier.researcheridB-1190-2014cs
dc.identifier.researcheridE-6860-2011cs
dc.identifier.scopus55248382600cs
dc.identifier.scopus6508136842cs
dc.identifier.urihttps://hdl.handle.net/11012/250178
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofADVANCED FUNCTIONAL MATERIALScs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202313014cs
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-301X/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectphase transitionsen
dc.subjectplasmonsen
dc.subjectthin filmsen
dc.subjectultrafast magnetismen
dc.subjectultrafast X-ray diffractionen
dc.titleAccelerating the Laser-Induced Phase Transition in Nanostructured FeRh via Plasmonic Absorptionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188690en
sync.item.dbtypeVAVen
sync.item.insts2025.03.25 18:40:13en
sync.item.modts2025.03.25 14:32:03en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Nanomagnetismus a spintronikacs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024Mattern.pdf
Size:
5.93 MB
Format:
Adobe Portable Document Format
Description:
file 2024Mattern.pdf