Konstrukce z nepálené hlíny z pohledu LCA analýzy

Abstract

Stavební sektor má významný dopad na životní prostředí kvůli vysoké spotřebě materiálů a energie. Z tohoto důvodu roste zájem o alternativní stavební systémy s nižším dopadem na životní prostředí. Hliněné stavební systémy, jako je nepálená hlína a dusaná zemina, představují tradiční stavební techniky, které lze v rámci moderní udržitelné výstavby přehodnotit. Tato diplomová práce hodnotí hliněné konstrukce z pohledu posouzení životního cyklu (LCA) a porovnává je s běžně používaným tradičním stavebním systémem. Hlavním cílem studie je popsat různé typy hliněných konstrukcí a posoudit jejich vliv na životní prostředí ve srovnání s konvenčními budovami. Analýza se provádí na úrovni budovy, aby odrážela realistické stavební podmínky. Jsou analyzovány tři varianty obytných budov: nepálená budova, dusaná hlína a tradiční zděná budova. Všechny budovy jsou založeny na stejném architektonickém uspořádání, podlahové ploše a životnosti. Pro zajištění spravedlivého srovnání je tepelná výkonnost obvodových plášťů budov upravena tak, aby se dosáhlo podobných hodnot U. Výsledkem jsou minimalizované rozdíly v provozní spotřebě energie a srovnání se zaměřuje především na dopady materiálů na životní prostředí. Výpočty LCA se provádějí pomocí softwaru GaBi a datových sad v souladu s normou EN 15804+A2. Hodnocení zahrnuje hlavní fáze životního cyklu: výrobu materiálu (A1–A3), výstavbu a instalaci (A4–A5), provoz a údržbu (fáze B) a procesy na konci životnosti (C1–C3). Dopady na životní prostředí jsou hodnoceny pomocí vybraných kategorií dopadů, jako je potenciál globálního oteplování, využívání fosilních zdrojů a spotřeba vody. Výsledky ukazují, že hliněné stavební systémy mají obecně nižší dopady na životní prostředí než tradiční stavební systémy, zejména ve fázi výroby materiálu. To je způsobeno především nízkou úrovní zpracování materiálu a absencí energeticky náročných výrobních procesů. Při srovnatelné tepelné účinnosti se provozní spotřeba energie mezi analyzovanými variantami významně neliší. Fáze konce životnosti také ukazuje výhody pro hliněné budovy díky lepší recyklovatelnosti a nižším dopadům nakládání s odpady. Studie potvrzuje, že hliněné stavební systémy mohou nabídnout environmentální výhody v obytných budovách, pokud jsou navrženy podle moderních požadavků na energetickou náročnost. Výsledky zdůrazňují důležitost výběru materiálu a ukazují, že hliněné konstrukce mohou být životaschopnou a udržitelnou alternativou ke konvenčním stavebním systémům.
The construction sector has a significant impact on the environment due to high material consumption and energy use. For this reason, there is increasing interest in alternative construction systems with lower environmental impacts. Earthen construction systems, such as adobe and rammed earth, represent traditional building techniques that can be reconsidered within modern sustainable construction. This master’s thesis evaluates earthen structures from the perspective of Life Cycle Assessment (LCA) and compares them with a commonly used traditional construction system. The main aim of the study is to describe different types of earthen structures and to assess their environmental performance in comparison with conventional buildings. The analysis is carried out at the building level to reflect realistic construction conditions. Three residential building variants are analysed: an adobe building, a rammed earth building, and a traditional masonry building. All buildings are based on the same architectural layout, floor area, and service life. To ensure a fair comparison, the thermal performance of the building envelopes is adjusted to achieve similar U-values. As a result, differences in operational energy demand are minimized, and the comparison focuses mainly on material-related environmental impacts. The LCA calculations are performed using GaBi software and datasets compliant with EN 15804+A2. The assessment includes the main life-cycle stages: material production (A1–A3), construction and installation (A4–A5), operation and maintenance (B stage), and end-of-life processes (C1–C3). Environmental impacts are evaluated using selected impact categories such as Global Warming Potential, fossil resource use, and water use. The results show that earthen construction systems generally have lower environmental impacts than the traditional construction system, especially in the material production stage. This is mainly due to the low level of material processing and the absence of energy-intensive manufacturing processes. When thermal performance is comparable, operational energy use does not significantly differ between the analysed variants. The end-of-life phase also shows advantages for earthen buildings due to better recyclability and lower waste treatment impacts. The study confirms that earthen construction systems can offer environmental benefits in residential buildings when designed according to modern performance requirements. The results highlight the importance of material choice and demonstrate that earthen structures can be a viable and sustainable alternative to conventional construction systems.

Description

Citation

DEMIRKIRAN, V. Konstrukce z nepálené hlíny z pohledu LCA analýzy [online]. Brno: Vysoké učení technické v Brně. Fakulta stavební. 2026.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

bez specializace

Comittee

doc. Ing. David Bečkovský, Ph.D. (místopředseda) doc. Ing. František Vajkay, Ph.D. (člen) Ing. Jan Müller, Ph.D. (člen) Ing. Lubor Kalousek, Ph.D. (člen) Ing. Martin Mohapl, Ph.D. (člen) Ing. Petr Šimůnek, Ph.D. (člen) doc. Ing. Roman Fojtík, Ph.D. (předseda)

Date of acceptance

2026-02-03

Defence

The student presented his work Earthen Structures from the perspective of LCA, using a PowerPoint presentation. During the defence of the thesis, he stated: - Introduction, Topic, Aim, - Overview, LCA, EIC, - LCA Phases, - Adobe brick building, Rammed earth building, Conventional building, - External wall U-values, - Roof U-values, - Slab in contact with soil U-values, - Adobe bricks, - Rammed earth blocks - Environmental impact results (EIR) climate change, - EIR ozone depletion, - EIR photochemical ozone formation, - EIR resource use, fossil - EIR water use, The student further clarified and answered the questions and comments of the supervisor and the opponent of the thesis: Opponent questions: Please, explain the use of references in the thesis. References such as (Cuce, 2021) or (Goodhew, 2016) are not included in bibliography at the end of the thesis. References such as (Beckett et al., 2020) do not exist in the form described in bibliography. References such as (Habert et al., 2020) are irrelevant to the text where they are cited. Please, explain the boundary conditions of the assessment: functional unit, system boundaries, data sources, etc. How did you establish them? Did you face any issues? Please, explain the calculation method. Why did you select particular impact categories? Were there any other options? Did you consider comparing the results with literature? Are your results comparable to those presented in existing literature? Only a fraction of results listed in the appendices is presented in the thesis. Please, describe the environmental impacts of the assessed structures divided per material: which material/dataset has the highest share on the results, which the lowest, etc. Please, explain if you performed any statistical analysis (e.g. sensitivity analysis) of the results as the LCA standards suggest. Please, explain the lessons learned and implications for R&D and industry. Student se snažil vcelku velmi dobře reagovat na připomínky oponenta a zdůvodňovat svoje navrhovaná řešení, rovněž na většinu otázek členů komise k předložené práci reagoval velmi dobře.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO