Monitorování chodců pomocí dronu

Loading...
Thumbnail Image

Date

Authors

Dušek, Vladimír

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá monitorováním lidí na videozáznamu pořízeným dronem. Detekce osob v obraze je realizována pomocí natrénovaného modelu detekční sítě RetinaNet. Každé detekované osobě je extrahován příznakový vektor pomocí barevných histogramů. Jednoznačná identifikace detekovaných osob je uskutečněna porovnáváním jejich příznakových vektorů s ohledem na jejich vzdálenost ve snímku. Nakonec je vykreslena trajektorie pohybů všech detekovaných osob do výsledného panoramatického obrázku. Úspěšnost detektoru na těžkých validačních datech je 58,6%. Chybovost je částečně vyřešena způsobem navrhnutí algoritmu pro vizualizaci trajektorií. Pro korektní vykreslení trajektorie osoby ji není nutné úspěšně detekovat v každém snímku. Zároveň statické objekty, kde je vysoká pravděpodobnost, že se nejedná o člověka, nejsou vizualizovány vůbec. Algoritmů zabývajících se detekcí lidí je velké množství, avšak přístupů zaměřených se na pohled z výšky je velmi poskromnu.
This thesis is focused on monitoring people in a video footage captured by drone. People are detected by trained model of detector RetinaNet. A feature vector is extracted for each detected person using color histograms. Identification of people is realized by comparing their feature vectors with respect to their distance in the frame. In the end the trajectories of all people are visualized in a panorama image. Accuracy of the trained RetinaNet detector on difficult validation data is 58.6 %. Error rate is partially reduced by the way of algorithm design for trajectory visualisation. It's not necessary to successfully detect person on every frame for correct visualization of its trajectories. At the same time, static objects which are detected as person but are not moving are not consider as people and are not visualized at all. There is a lot of algorithms dealing with people detection however only a few approaches are focused on detection people from an aerial footage.

Description

Citation

DUŠEK, V. Monitorování chodců pomocí dronu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) Ing. Michal Fusek, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2019-06-10

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázku oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Jaké musí být minimální rozlišení snímku osoby (z horního pohledu), aby detektor začal provádět úspěšné detekce? Souvisí kvalita detekce na hustotě rozmístění lidí? Dala by se přesnost 58% zlepšit?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO