3D TIŠTĚNÉ UMĚLÉ MATERIÁLY PRO MIKROVLNNÉ STRUKTURY
Loading...
Date
Authors
Kaděra, Petr
ORCID
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Tato dizertační práce se zabývá výzkumem 3D tištěných umělých elektromagnetických struktur pro návrh antén a mikrovlnných obvodů. Umělé struktury obsahující dielektrické i vodivé příměsi s různými geometrickými tvary jsou zkoumány a jejich přesný popis, včetně zahrnutí vlivu anizotropie, může zlepšit stávající přesnost a rychlost návrhu. Prvně jsou srovnány modely založené na analytickém přístupu modelování kapacitorů s teorií efektivního media, numerickou simulací a naměřenými výsledky, které jsou poskytnuty pro rozličné parametry materiálů, jenž jsou dostupné v technologii 3D tisku. Navržené modely metodou kapacitorů mohou být obecně využity pro rychlejší a přesnější určení efektivní komplexní permitivity, což zvyšuje potenciál dané metody při využití optimalizačních technik. Jako druhá je využita metoda vícemódových přenosových matic, která poskytuje obecný a účinný způsob výpočtu efektivní permitivity a efektivní permeability umělých struktur obsahující jak dielektrické, tak i kovové inkluze, napříč objemovým prostorem zkoumané struktury. Umělé struktury obsahující kovové inkluze obecně umožňují dosahovat široký ladící rozsah efektivních konstitutivních parametrů. Následně jsou navrženy vhodné struktury s prostorovým rozložením permittivity pro širokoúhlé Luneburgovy čočky s gradientním indexem lomu v pásmu milimetrových vln využitelné jako antény nebo retro reflektory pro zlepšení širokoúhlového rozsahu pokrytí a stabilní efektivní odrazné plochy u pasivních bezčipových frekvenčně kódovaných radiofrekvenčně identifikovaných orientačních bodů, jenž mají velký potenciál pro využití sebe-lokalizace uvnitř budov.
The dissertation thesis deals with the research of 3D printed artificial electromagnetic structures exploitable for antenna and microwave component design. Artificial structures containing dielectric and metallic inclusions of various geometries are investigated, and their precise description, including the anisotropy effect, can improve the actual design speed and accuracy. First, the models based on the analytical parallel plate capacitor method are compared with an effective medium theory, numerical, and experimental results, which are provided for various parameters of materials available in 3D printing technology. The proposed models derived by the parallel plate capacitor method can generally be exploited for faster and highly accurate determination of the effective complex permittivity, which enhances its potential to be used with optimization techniques. Second, the hybrid multimodal transfer matrix method is exploited as a general and effective way for calculations of the effective permittivity and effective permeability of artificial structures containing both dielectric and metallic inclusions through the volumetric space of the structures studied. The artificial structures containing metallic inclusions generally allow to achieve a wide tuning range of the effective constitutive parameters. Finally, suitable structures with spatial permittivity distribution are developed for wide-angle millimeter-wave gradient-index Luneburg lenses employable as antennas or retroreflectors for wide angular coverage and stable radar cross section enhancements of passive, chipless frequency-coded radiofrequency identification tag landmarks which have a large potential for indoor self-localization.
The dissertation thesis deals with the research of 3D printed artificial electromagnetic structures exploitable for antenna and microwave component design. Artificial structures containing dielectric and metallic inclusions of various geometries are investigated, and their precise description, including the anisotropy effect, can improve the actual design speed and accuracy. First, the models based on the analytical parallel plate capacitor method are compared with an effective medium theory, numerical, and experimental results, which are provided for various parameters of materials available in 3D printing technology. The proposed models derived by the parallel plate capacitor method can generally be exploited for faster and highly accurate determination of the effective complex permittivity, which enhances its potential to be used with optimization techniques. Second, the hybrid multimodal transfer matrix method is exploited as a general and effective way for calculations of the effective permittivity and effective permeability of artificial structures containing both dielectric and metallic inclusions through the volumetric space of the structures studied. The artificial structures containing metallic inclusions generally allow to achieve a wide tuning range of the effective constitutive parameters. Finally, suitable structures with spatial permittivity distribution are developed for wide-angle millimeter-wave gradient-index Luneburg lenses employable as antennas or retroreflectors for wide angular coverage and stable radar cross section enhancements of passive, chipless frequency-coded radiofrequency identification tag landmarks which have a large potential for indoor self-localization.
Description
Keywords
3D tisk, umělá dielektrika, umělé materiály, dielektrické substráty, kapacitory s paralelními elektrodami, teorie efektivního média, aditivní výroba, čočková anténa, charakterizace materiálu, milimetrové vlny, prostorová distribuce permittivity, retroreflektor., 3D printing, artificial dielectrics, artificial materials, dielectric substrate, parallel plate capacitor, effective medium theory, additive manufacturing, lens antenna, material characterization, millimeter-waves, spatial permittivity distribution, retroreflector.
Citation
KADĚRA, P. 3D TIŠTĚNÉ UMĚLÉ MATERIÁLY PRO MIKROVLNNÉ STRUKTURY [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2023.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
doc. Ing. Martin Štumpf, Ph.D. (předseda)
prof. Ing. Aleš Prokeš, Ph.D. (člen)
doc. Ing. Marie Richterová, Ph.D. (člen)
doc. Ing. Pavel Hazdra, Ph.D. (člen)
doc. Ing. Milan Polívka, Ph.D. - reviewer (člen)
dr. Ping Jack Soh - reviewer (člen)
prof. Ing. Jaroslav Čechák, Ph.D. (člen)
Date of acceptance
2023-04-21
Defence
Mr. Petr Kadera delivered his presentation, where he introduced the PhD jury and the audience with the outcomes of his research on 3-D Printed Artificial Materials for Microwave Structures. His PhD research had three main objectives (a) an analytical description of artificial dielectric substrates; (b) a description of artificial substrates with conductive inclusions; (c) lenses for retroreflective structures. By secret ballot, the members of the PhD jury have concluded that the objectives of the PhD research have been met. Therefore, the candidate has fullfilled all the conditions to be granted a PhD degree.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení