A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

Loading...
Thumbnail Image
Date
2023-12-31
Authors
Amin, Reham
El-Taweel, Ghada
Ali, Ahmed Fouad
Tahoun, Mohamed
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Automation and Computer Science, Brno University of Technology
Altmetrics
Abstract
The vast amounts of data, lack of scalability, and low detection rates of traditional intrusion detection technologies make it impossible to keep up with evolving and increasingly sophisticated cyber threats. Therefore, there is an urgent need to detect and stop cyber threats early. Deep Learning has greatly improved intrusion detection due to its ability to self-learn and extract highly accurate features. In this paper, a Hybrid XG Boosted and Long Short-Term Memory algorithm (HXGBLSTM) is proposed. A comparative analysis is conducted between the computational performance of six established evolutionary computation algorithms and the recently developed bio-inspired metaheuristic algorithm called Zebra Optimisation Algorithm. These algorithms include the Particle Swarm Optimisation Algorithm, the Bio-inspired Algorithms, Bat Optimisation Algorithm, Firefly Optimisation Algorithm, and Monarch Butterfly Optimisation Algorithm, as well as the Genetic Algorithm as an Evolutionary Algorithm. The dimensionality curse has been mitigated by using these metaheuristic methods for feature selection, and the results are compared with the wrapper-based feature selection XGBoost algorithm. The proposed algorithm uses the CSE-CIC -IDS2018 dataset, which contains the latest network attacks. XGBoost outperformed the other FS algorithms and was used as the feature selection algorithm. In evaluating the effectiveness of the newly proposed HXGBLSTM, binary and multi-class classifications are considered. When comparing the performance of the proposed HXGBLSTM for cyber threat detection, it outperforms seven innovative deep learning algorithms for binary classification and four of them for multi-class classification. Other evaluation criteria such as recall, F1 score, and precision have been also used for comparison. The results showed that the best accuracy for binary classification is 99.8\%, with F1-score of 99.83\%, precision of 99.85\%, and recall of 99.82\%, in extensive and detailed experiments conducted on a real dataset. The best accuracy, F1-score, precision, and recall for multi-class classification were all around 100\%, which does give the proposed algorithm an advantage over the compared ones.
Description
Citation
Mendel. 2023 vol. 29, č. 2, s. 307-322. ISSN 1803-3814
https://mendel-journal.org/index.php/mendel/article/view/288
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license
http://creativecommons.org/licenses/by-nc-sa/4.0
Collections
Citace PRO