Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels

dc.contributor.authorAbudllaeva, Oliya S.cs
dc.contributor.authorSahalianov, Ihorcs
dc.contributor.authorEjneby, Malin Silvercs
dc.contributor.authorJakešová, Mariecs
dc.contributor.authorZozoulenko, Igorcs
dc.contributor.authorLiin, Sara I.cs
dc.contributor.authorGlowacki, Eric Danielcs
dc.coverage.issue3cs
dc.coverage.volume9cs
dc.date.issued2022-01-01cs
dc.description.abstractH2O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2O2). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2O2-sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2O2 delivery system, paving the way to ROS-based organic bioelectronics.en
dc.formattextcs
dc.format.extent1-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Science. 2022, vol. 9, issue 3, p. 1-14.en
dc.identifier.doi10.1002/advs.202103132cs
dc.identifier.issn2198-3844cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other177521cs
dc.identifier.urihttp://hdl.handle.net/11012/204600
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofAdvanced Sciencecs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/advs.202103132cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2198-3844/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectelectrochemistryen
dc.subjectorganic bioelectronicsen
dc.subjectpotassium channelsen
dc.subjectreactive oxygen speciesen
dc.subjectXenopus laevis oocytesen
dc.titleFaradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channelsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177521en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:49:43en
sync.item.modts2025.01.17 15:29:24en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021Abdullaeva.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
2021Abdullaeva.pdf