Half-linear differential equations: Regular variation, principal solutions, and asymptotic classes

dc.contributor.authorŘehák, Pavelcs
dc.coverage.issue1cs
dc.coverage.volume2023cs
dc.date.issued2023-01-03cs
dc.description.abstractWe are interested in the structure of the solution space of second-order half-linear differential equations taking into account various classifications regarding asymptotics of solutions. We focus on an exhaustive analysis of the relations among several types of classes which include the classes constructed with respect to the values of the limits of solutions and their quasiderivatives, the classes of regularly varying solutions, the classes of principal and nonprincipal solutions, and the classes of the so-lutions that obey certain asymptotic formulae. Many of our observations are new even in the case of linear differential equations, and we provide also the revision of existing results.en
dc.formattextcs
dc.format.extent1-28cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationElectronic Journal of Qualitative Theory of Differential Equations. 2023, vol. 2023, issue 1, p. 1-28.en
dc.identifier.doi10.14232/ejqtde.2023.1.1cs
dc.identifier.issn1417-3875cs
dc.identifier.orcid0000-0002-2452-2204cs
dc.identifier.other183067cs
dc.identifier.researcheridN-3315-2019cs
dc.identifier.scopus7102264947cs
dc.identifier.urihttp://hdl.handle.net/11012/213706
dc.language.isoencs
dc.publisherBolyai Institute, University of Szegedcs
dc.relation.ispartofElectronic Journal of Qualitative Theory of Differential Equationscs
dc.relation.urihttps://www.math.u-szeged.hu/ejqtde/p9954.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1417-3875/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecthalf-linear differential equationregularly varying functionprincipal solu-tionasymptotic formulaen
dc.titleHalf-linear differential equations: Regular variation, principal solutions, and asymptotic classesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183067en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:55en
sync.item.modts2025.01.17 16:52:42en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
p9954.pdf
Size:
626.96 KB
Format:
Adobe Portable Document Format
Description:
p9954.pdf