Use of Lightweight Sintered Fly Ash Aggregates in Concrete at High Temperatures

Loading...
Thumbnail Image

Authors

Křížová, Klára
Bubeník, Jan
Sedlmajer, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This study addresses the issue of the resistance to high temperatures of lightweight concrete lightweighted with sintered fly ash aggregate. Lightweight concretes with different amounts of lightweighting and their properties after loading temperatures of 600, 800 and 1000 °C were investigated. In particular, the effect of high temperature on the mechanical properties of the concrete was determined on the test specimens, and the effect on the microstructure was investigated by X-ray diffraction analysis and scanning electron microscopy. It was found that there is an increase in compressive strength between 0 and 21% up to 800 °C, where the increase in strength decreases with increasing degree of lightening. At 1000 °C, the internal structure of the lightweight concrete destabilized, and the compressive strength decreased in the range of 51–65%. After loading at 1000 °C, the scanning electron microscope showed the formation of spherical-shaped neoplasms, which significantly reduced the internal integrity of the cement matrix in the lightweight concrete due to the increase in their volume. It was found that the lightweight concretes with higher lightweighting showed significantly less degradation due to higher temperature.
This study addresses the issue of the resistance to high temperatures of lightweight concrete lightweighted with sintered fly ash aggregate. Lightweight concretes with different amounts of lightweighting and their properties after loading temperatures of 600, 800 and 1000 °C were investigated. In particular, the effect of high temperature on the mechanical properties of the concrete was determined on the test specimens, and the effect on the microstructure was investigated by X-ray diffraction analysis and scanning electron microscopy. It was found that there is an increase in compressive strength between 0 and 21% up to 800 °C, where the increase in strength decreases with increasing degree of lightening. At 1000 °C, the internal structure of the lightweight concrete destabilized, and the compressive strength decreased in the range of 51–65%. After loading at 1000 °C, the scanning electron microscope showed the formation of spherical-shaped neoplasms, which significantly reduced the internal integrity of the cement matrix in the lightweight concrete due to the increase in their volume. It was found that the lightweight concretes with higher lightweighting showed significantly less degradation due to higher temperature.

Description

Citation

Buildings. 2022, vol. 12, issue 12, 17 p.
https://www.mdpi.com/2075-5309/12/12/2090

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO