Maximizing the electrochemical performance of supercapacitor electrodes from plastic waste

dc.contributor.authorDědek, Ivancs
dc.contributor.authorBartusek, Stanislavcs
dc.contributor.authorDvořáček, Josef Jancs
dc.contributor.authorNečas, Jancs
dc.contributor.authorPetruš, Josefcs
dc.contributor.authorJakubec, Petrcs
dc.contributor.authorKupka, Vojtěchcs
dc.contributor.authorOtyepka, Michalcs
dc.coverage.issueDcs
dc.coverage.volume72cs
dc.date.accessioned2024-02-19T12:46:01Z
dc.date.available2024-02-19T12:46:01Z
dc.date.issued2023-08-07cs
dc.description.abstractThe management of the increasing volume of plastic waste has become a key challenge for society. A promising strategy now consists in the transformation of plastic waste into high-value materials that can be utilized in energy storage devices such as batteries and supercapacitors. In this study, we demonstrate a two-step procedure, involving pyrolysis, followed by chemical activation that will convert common plastic waste into activated carbons (ACs). This technique makes ACs suitable for supercapacitor electrode materials. Further, the electrochemical performance of ACs is outstanding in terms of capacitance, energy density, and cycling stability. Besides the well-established parameters, including a specific surface area and micropore volume, we found that other critical factors such as polymer glass transition temperature, polymer-activating agent miscibility, activating agent (K2CO3):AC ratio, and AC water dispersion stability also play a crucial role in determining the supercapacitors performance. Controlling these parameters, we obtained ACs as supercapacitor electrodes from a range of plastic waste materials with a competitive electrochemical performance. Specifically, the ACs exhibited a specific capacitance of 220 F g1 (at a current density of 1 A g1), energy and power densities of 61.1 Wh kg1 and 36.9 kW kg1, respectively, and excellent cycling stability (95 % retention after 30,000 cycles). Our findings provide a pathway towards transforming plastic waste into valuable electrode materials for supercapacitors.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Energy Storage. 2023, vol. 72, issue D, p. 1-9.en
dc.identifier.doi10.1016/j.est.2023.108660cs
dc.identifier.issn2352-1538cs
dc.identifier.orcid0000-0002-7531-697Xcs
dc.identifier.other184698cs
dc.identifier.researcheridAAB-8542-2019cs
dc.identifier.scopus57132513600cs
dc.identifier.urihttps://hdl.handle.net/11012/245045
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofJournal of Energy Storagecs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2352152X23020571cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2352-1538/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectElectrochemistryen
dc.subjectsupercapacitorsen
dc.subjectplastic wasteen
dc.subjectpyrolysisen
dc.subjectactivated carbonen
dc.titleMaximizing the electrochemical performance of supercapacitor electrodes from plastic wasteen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184698en
sync.item.dbtypeVAVen
sync.item.insts2024.02.19 13:46:01en
sync.item.modts2024.02.19 13:13:22en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2352152X23020571main.pdf
Size:
5.61 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2352152X23020571main.pdf