Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles

dc.contributor.authorYadav, Raghvendra Singhcs
dc.contributor.authorKuřitka, Ivocs
dc.contributor.authorVilčáková, Jarmilacs
dc.contributor.authorJamatia, Thaiskangcs
dc.contributor.authorMachovský, Michalcs
dc.contributor.authorŠkoda, Davidcs
dc.contributor.authorUrbánek, Pavelcs
dc.contributor.authorMasař, Milancs
dc.contributor.authorUrbánek, Michalcs
dc.contributor.authorKalina, Lukášcs
dc.contributor.authorHavlica, Jaromírcs
dc.coverage.issue1cs
dc.coverage.volume61cs
dc.date.issued2020-03-01cs
dc.description.abstractHerein, we report sonochemical synthesis of MnFe2O4 spinel ferrite nanoparticles using UZ SONOPULS HD 2070 Ultrasonic homogenizer (frequency: 20 kHz and power: 70 W). The sonication time and percentage amplitude of ultrasonic power input cause appreciable changes in the structural, cation distribution and physical properties of MnFe2O4 nanoparticles. The average crystallite size of synthesized MnFe2O4 nanoparticles was increased with increase of sonication time and percentage amplitude of ultrasonic power input. The occupational formula by Xray photoelectron spectroscopy for prepared spinel ferrite nanoparticles was (Mn0.29Fe0.42[Mn0.71Fe1.58]O-4 and (Mn0.28Fe0.54) [Mn0.72Fe1.46]O-4 at sonication time 20 min and 80 min, respectively. The value of the saturation magnetization was increased from 1.9 emu/g to 52.5 emu/g with increase of sonication time 20 min to 80 min at constant 50% amplitude of ultrasonic power input, whereas, it was increased from 30.2 emu/g to 59.4 emu/g with increase of the percentage amplitude of ultrasonic power input at constant sonication time 60 min. The highest value of dielectric constant (epsilon') was 499 at 1 kHz for nanoparticles at sonication time 20 min, whereas, ac conductivity was 368 x 10(-9) S/cm at 1 kHz for spinel ferrite nanoparticles at sonication time 20 min. The demonstrated controllable physical characteristics over sonication time and percentage amplitude of ultrasonic power input are a key step to design spinel ferrite material of desired properties for specific application. The investigation of microwave operating frequency suggest that these prepared spinel ferrite nanoparticles are potential candidate for fabrication of devices at high frequency applications.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationULTRASONICS SONOCHEMISTRY. 2020, vol. 61, issue 1, p. 1-15.en
dc.identifier.doi10.1016/j.ultsonch.2019.104839cs
dc.identifier.issn1350-4177cs
dc.identifier.orcid0000-0001-8127-8175cs
dc.identifier.orcid0000-0001-5103-150Xcs
dc.identifier.other162143cs
dc.identifier.scopus55255338000cs
dc.identifier.urihttp://hdl.handle.net/11012/195852
dc.language.isoencs
dc.publisherELSEVIERcs
dc.relation.ispartofULTRASONICS SONOCHEMISTRYcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1350417719312696cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1350-4177/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectSpinel ferriteen
dc.subjectNanoparticlesen
dc.subjectSonochemical synthesisen
dc.subjectMagnetic propertyen
dc.subjectElectrical propertyen
dc.titleImpact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticlesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-162143en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:38:18en
sync.item.modts2025.01.17 18:38:53en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1350417719312696main.pdf
Size:
4.24 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S1350417719312696main.pdf