Hybrid Symbolic Regression with the Bison Seeker Algorithm

dc.contributor.authorMerta, Jan
dc.coverage.issue1cs
dc.coverage.volume25cs
dc.date.accessioned2020-05-05T07:21:10Z
dc.date.available2020-05-05T07:21:10Z
dc.date.issued2019-06-24cs
dc.description.abstractThis paper focuses on the use of the Bison Seeker Algorithm (BSA) in a hybrid genetic programming approach for the supervised machine learning method called symbolic regression. While the basic version of symbolic regression optimizes both the model structure and its parameters, the hybrid version can use genetic programming to find the model structure. Consequently, local learning is used to tune model parameters. Such tuning of parameters represents the lifetime adaptation of individuals. This paper aims to compare the basic version of symbolic regression and hybrid version with the lifetime adaptation of individuals via the Bison Seeker Algorithm. Author also investigates the influence of the Bison Seeker Algorithm on the rate of evolution in the search for function, which fits the given input-output data. The results of the current study support the fact that the local algorithm accelerates evolution, even with a few iterations of a Bison Seeker Algorithm with small populations.en
dc.formattextcs
dc.format.extent79-86cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 25, č. 1, s. 79-86. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2019.1.079en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/186985
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/82cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectgenetic programmingen
dc.subjectsymbolic regressionen
dc.subjecthybrid methodsen
dc.subjectlocal learningen
dc.subjectbison seeker algorithmen
dc.titleHybrid Symbolic Regression with the Bison Seeker Algorithmen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019-1-079.pdf
Size:
933.46 KB
Format:
Adobe Portable Document Format
Description:
Collections