Method for Maintaining Technical Condition of Marine Diesel Engine Bearings

Loading...
Thumbnail Image

Authors

Sagin, Sergii
Sagin, Arsenii
Zablotskyi, Yurii
Fomin, Oleksij
Píštěk, Václav
Kučera, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The aim of the research was to determine the impact of antifriction coatings on the technical condition of marine diesel engine bearings. Various epilams were used as antifriction coatings, with a thin layer applied to the surfaces of the bearings of the marine diesel engines 12V32/40 MAN-Diesel&Turbo. The thickness of the epilam coating adsorbed on the metal surface was controlled by ellipsometry. It was found that the thickness of the epilam layer on the surfaces of marine diesel engine bearings could reach 11.2 nm to 17.0 nm. The adsorption time required does not exceed 10 min. It was shown that the epilam nanolayer applied to the metal surface led to an increase in the structural characteristics of the oil boundary layer (thickness: from 12.3 µm to 15.2–18.3 µm; contact angles: from 10.2 deg to 15.8–17.4 deg). It was experimentally confirmed that the epilam coating of bearing surfaces significantly reduced their wear. For the 12V32/40 MAN-Diesel&Turbo marine diesel engine, in the case of epilaminating, the wear of the bearing shell surface was reduced by 6.1–27.6%, with the greatest reduction in wear occurring for the stern (most loaded) bearings. This helped to maintain the technical condition of the bearings of marine diesel engines.
The aim of the research was to determine the impact of antifriction coatings on the technical condition of marine diesel engine bearings. Various epilams were used as antifriction coatings, with a thin layer applied to the surfaces of the bearings of the marine diesel engines 12V32/40 MAN-Diesel&Turbo. The thickness of the epilam coating adsorbed on the metal surface was controlled by ellipsometry. It was found that the thickness of the epilam layer on the surfaces of marine diesel engine bearings could reach 11.2 nm to 17.0 nm. The adsorption time required does not exceed 10 min. It was shown that the epilam nanolayer applied to the metal surface led to an increase in the structural characteristics of the oil boundary layer (thickness: from 12.3 µm to 15.2–18.3 µm; contact angles: from 10.2 deg to 15.8–17.4 deg). It was experimentally confirmed that the epilam coating of bearing surfaces significantly reduced their wear. For the 12V32/40 MAN-Diesel&Turbo marine diesel engine, in the case of epilaminating, the wear of the bearing shell surface was reduced by 6.1–27.6%, with the greatest reduction in wear occurring for the stern (most loaded) bearings. This helped to maintain the technical condition of the bearings of marine diesel engines.

Description

Citation

Lubricants. 2025, vol. 13, issue 4, p. 1-20.
https://www.mdpi.com/2075-4442/13/4/146

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO