Machine Learning-Driven Detection of Repetitive Manufacturing Processes Using Radar Sensor

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorMartinik, Tomáš
dc.date.accessioned2025-07-30T10:03:10Z
dc.date.available2025-07-30T10:03:10Z
dc.date.issued2025cs
dc.description.abstractThis paper presents a non-invasive system for detecting repetitive manufacturing cycles using pulse-coherent radar and machine learning. The Acconeer A111 radar sensor, combined with an Arducam USB camera, is integrated within a ROS2-based data acquisition framework. The system operates in Envelope and Sparse radar modes, optimized for tracking static and dynamic motion. A YOLO-based model analyzes radar heatmaps to detect repetitive cycles automatically. The approach was validated through controlled experiments and in an industrial setting. Results demonstrate the system’s potential to accurately detect production cycles without modifying existing machinery, highlighting its potential for real-time process monitoring and optimization.en
dc.formattextcs
dc.format.extent136-139cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 136-139. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.136
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255338
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectRadar sensingen
dc.subjectROS2en
dc.subjectdata collectionen
dc.subjectmachine learningen
dc.subjectproduction monitoring.en
dc.titleMachine Learning-Driven Detection of Repetitive Manufacturing Processes Using Radar Sensoren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
136-Martinik.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format