Machine Learning-Driven Detection of Repetitive Manufacturing Processes Using Radar Sensor
| but.event.date | 29.04.2025 | cs |
| but.event.title | STUDENT EEICT 2025 | cs |
| dc.contributor.author | Martinik, Tomáš | |
| dc.date.accessioned | 2025-07-30T10:03:10Z | |
| dc.date.available | 2025-07-30T10:03:10Z | |
| dc.date.issued | 2025 | cs |
| dc.description.abstract | This paper presents a non-invasive system for detecting repetitive manufacturing cycles using pulse-coherent radar and machine learning. The Acconeer A111 radar sensor, combined with an Arducam USB camera, is integrated within a ROS2-based data acquisition framework. The system operates in Envelope and Sparse radar modes, optimized for tracking static and dynamic motion. A YOLO-based model analyzes radar heatmaps to detect repetitive cycles automatically. The approach was validated through controlled experiments and in an industrial setting. Results demonstrate the system’s potential to accurately detect production cycles without modifying existing machinery, highlighting its potential for real-time process monitoring and optimization. | en |
| dc.format | text | cs |
| dc.format.extent | 136-139 | cs |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.citation | Proceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 136-139. ISBN 978-80-214-6320-2 | cs |
| dc.identifier.doi | 10.13164/eeict.2025.136 | |
| dc.identifier.isbn | 978-80-214-6320-2 | |
| dc.identifier.issn | 2788-1334 | |
| dc.identifier.uri | https://hdl.handle.net/11012/255338 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.relation.ispartof | Proceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers | en |
| dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdf | cs |
| dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights.access | openAccess | en |
| dc.subject | Radar sensing | en |
| dc.subject | ROS2 | en |
| dc.subject | data collection | en |
| dc.subject | machine learning | en |
| dc.subject | production monitoring. | en |
| dc.title | Machine Learning-Driven Detection of Repetitive Manufacturing Processes Using Radar Sensor | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
