Hand gesture recognition from EMG signal using machine learning

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorNguyen, Dan
dc.date.accessioned2025-07-30T10:03:11Z
dc.date.available2025-07-30T10:03:11Z
dc.date.issued2025cs
dc.description.abstractThis work addresses the issue of upper limb gesture recognition based on the analysis of surface EMG signals recorded in the wrist area. Machine learning classification algorithms, especially LDA, are utilized for this purpose. The research focuses on future applications of this technology, particularly in the field of remote control of electronic devices in real-time, such as controlling smart home systems, robots, or other intelligent systems. In this paper, LDA machine learning classification models with different parameters were trained, achieving success rates up to 94.15% on testing data. Furthermore, a detailed analysis was conducted to examine how the specifically placed recording electrodes affected the success rate of the resulting machine learning model. This analysis can be followed to reduce the number of recording electrodes while minimizing the decrease in classification success rate.en
dc.formattextcs
dc.format.extent17-20cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 17-20. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.17
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255344
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectEMGen
dc.subjectgesturesen
dc.subjectwristen
dc.subjectclassificationen
dc.subjectmachine learningen
dc.subjectMATLABen
dc.titleHand gesture recognition from EMG signal using machine learningen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17-Nguyen.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format