Out-of-equilibrium microstates but effective thermodynamics in artificial kagome ice networks

dc.contributor.authorCecchi, Breno Malvezzics
dc.contributor.authorLacaze, Sebastiencs
dc.contributor.authorBrunn, Ondřejcs
dc.contributor.authorKratky, Stanislavcs
dc.contributor.authorMeluzin, Petrcs
dc.contributor.authorCoraux, Johanncs
dc.contributor.authorPirota, Kleber Robertocs
dc.contributor.authorRougemaille, Nicolascs
dc.coverage.issue112cs
dc.coverage.volume9cs
dc.date.accessioned2025-12-17T09:53:47Z
dc.date.issued2025-09-05cs
dc.description.abstractUsing magnetic force microscopy and Monte Carlo simulations, we investigate the low-energy properties of two artificial kagome ice structures. The two systems differ in that the first series of lattices consists of an assembly of physically disconnected nanomagnets coupled via magnetostatics, whereas the second series is made of fully connected honeycomb networks. Imaging the microstates resulting from a field demagnetization protocol, and analyzing their magnetic correlations in real and reciprocal space, we observe distinct behaviors between the two lattice types. While the former exhibits properties well described by the dipolar kagome ice model equilibrated at a finite fictional temperature, the latter instead is found systematically out of equilibrium. Remarkably, this out-of-equilibrium physics can be reformulated into an at-equilibrium one by strengthening specific coupling terms in the spin Hamiltonian. We interpret this property as a result of the field-induced domain wall propagation that arises when demagnetizing a connected network, i.e., a field driven kinetic process that competes with the formation of local flux-closure configurations that minimize the magnetostatic energy. Our findings highlight how micromagnetic effects bias the selection of spin liquid microstates during a field demagnetization protocol.en
dc.description.abstractUsing magnetic force microscopy and Monte Carlo simulations, we investigate the low-energy properties of two artificial kagome ice structures. The two systems differ in that the first series of lattices consists of an assembly of physically disconnected nanomagnets coupled via magnetostatics, whereas the second series is made of fully connected honeycomb networks. Imaging the microstates resulting from a field demagnetization protocol, and analyzing their magnetic correlations in real and reciprocal space, we observe distinct behaviors between the two lattice types. While the former exhibits properties well described by the dipolar kagome ice model equilibrated at a finite fictional temperature, the latter instead is found systematically out of equilibrium. Remarkably, this out-of-equilibrium physics can be reformulated into an at-equilibrium one by strengthening specific coupling terms in the spin Hamiltonian. We interpret this property as a result of the field-induced domain wall propagation that arises when demagnetizing a connected network, i.e., a field driven kinetic process that competes with the formation of local flux-closure configurations that minimize the magnetostatic energy. Our findings highlight how micromagnetic effects bias the selection of spin liquid microstates during a field demagnetization protocol.en
dc.formattextcs
dc.format.extent10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPhysical Review B. 2025, vol. 9, issue 112, 10 p.en
dc.identifier.doi10.1103/l8qm-5wh8cs
dc.identifier.issn2469-9950cs
dc.identifier.orcid0000-0002-3264-5714cs
dc.identifier.orcid0000-0002-6191-4469cs
dc.identifier.orcid0000-0002-0850-038Xcs
dc.identifier.orcid0000-0001-5007-6917cs
dc.identifier.orcid0000-0003-2373-3453cs
dc.identifier.orcid0000-0002-1467-4415cs
dc.identifier.orcid0000-0003-0923-1000cs
dc.identifier.other199894cs
dc.identifier.researcheridABF-4063-2021cs
dc.identifier.researcheridFGZ-3263-2022cs
dc.identifier.researcheridOIZ-1040-2025cs
dc.identifier.researcheridD-6833-2012cs
dc.identifier.researcheridD-7802-2016cs
dc.identifier.researcheridDVV-0667-2022cs
dc.identifier.researcheridJAQ-3803-2023cs
dc.identifier.researcheridFZU-5617-2022cs
dc.identifier.urihttps://hdl.handle.net/11012/255750
dc.language.isoencs
dc.relation.ispartofPhysical Review Bcs
dc.relation.urihttps://journals.aps.org/prb/abstract/10.1103/l8qm-5wh8cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2469-9950/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.titleOut-of-equilibrium microstates but effective thermodynamics in artificial kagome ice networksen
dc.title.alternativeOut-of-equilibrium microstates but effective thermodynamics in artificial kagome ice networksen
dc.type.driverarticleen
dc.type.versionsubmittedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LM/LM2023051cs
sync.item.dbidVAV-199894en
sync.item.dbtypeVAVen
sync.item.insts2025.12.17 10:53:47en
sync.item.modts2025.12.17 10:32:19en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
main.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:
file main.pdf