Speed Measurement from Traffic Camera Video Using Structure-from-Motion-Based Calibration

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorJežek, Štěpán
dc.contributor.authorBurget, Radim
dc.date.accessioned2025-07-30T10:03:12Z
dc.date.available2025-07-30T10:03:12Z
dc.date.issued2025cs
dc.description.abstractSpeed measurement from traffic camera video is an active research problem, primarily due to the challenges associated with accurate camera calibration in an uncontrolled environment. Traditional calibration techniques often require prior knowledge of the scene or manual input from the user, limiting their applicability in real-world scenarios. In this work, we propose a novel approach for traffic speed measurements using a camera calibration based on automatic 3D scene reconstruction via structure-from-motion (SfM). Our approach leverages deep learning-based feature extraction and matching, specifically SuperPoint and SuperGlue, to achieve precise scene reconstruction. By placing the camera within the reconstructed environment, we obtain its intrinsic and extrinsic parameters without requiring predefined reference objects. This allows us to establish a reliable reference for measuring distances in the scene. With this setup, we can accurately measure point distances on the ground plane, enabling robust speed estimation of moving vehicles. We present the implementation of our speed measurement method as a realtime application based on YOLO11 object detector and BoTSORT object tracker. Our approach achieves speed measurement accuracy with an error of 6.9 km/h compared to a GPS RTKbased reference benchmark, demonstrating its effectiveness for traffic monitoring applications.en
dc.formattextcs
dc.format.extent231-235cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 231-235. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.231
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255359
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectcamera calibrationen
dc.subjectdeep learningen
dc.subjectsemantic segmentationen
dc.subjectStructure-from-Motionen
dc.subjecttraffic speed measurementen
dc.titleSpeed Measurement from Traffic Camera Video Using Structure-from-Motion-Based Calibrationen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
231-Jezek.pdf
Size:
10.23 MB
Format:
Adobe Portable Document Format