Using artificial neural network models to assess water quality in water distribution networks

dc.contributor.authorCuesta Cordoba, Gustavo Andrescs
dc.contributor.authorTuhovčák, Ladislavcs
dc.contributor.authorTauš, Miloslavcs
dc.coverage.issue1cs
dc.coverage.volume70cs
dc.date.issued2014-04-30cs
dc.description.abstractThe purpose of the research is to assess chlorine concentration in WDS using statistical models based on ANN in combination with Monte-Carlo. This approach offers advantages in contrast to the generally use methods for modeling of chlorine decay in drinking water systems until now. The model was tested on one specific location using the hydraulic and water quality parameters such as flow, pH, temperature, etc. The model allows forecasting chlorine concentration at selected nodes of the water supply system. The results obtained in these selected nodes allow then to compare the chlorine concentration with EPANET in the system under assessment.en
dc.description.abstractThe purpose of the research is to assess chlorine concentration in WDS using statistical models based on ANN in combination with Monte-Carlo. This approach offers advantages in contrast to the generally use methods for modeling of chlorine decay in drinking water systems until now. The model was tested on one specific location using the hydraulic and water quality parameters such as flow, pH, temperature, etc. The model allows forecasting chlorine concentration at selected nodes of the water supply system. The results obtained in these selected nodes allow then to compare the chlorine concentration with EPANET in the system under assessment.en
dc.formattextcs
dc.format.extent399-408cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProcedia Engineering. 2014, vol. 70, issue 1, p. 399-408.en
dc.identifier.doi10.1016/j.proeng.2014.02.045cs
dc.identifier.issn1877-7058cs
dc.identifier.orcid0000-0002-2551-9226cs
dc.identifier.other108425cs
dc.identifier.scopus6506683395cs
dc.identifier.urihttp://hdl.handle.net/11012/194720
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofProcedia Engineeringcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1877705814000472cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unportedcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1877-7058/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cs
dc.subjectwater distribution systemsen
dc.subjectchlorine decayen
dc.subjectartificial neural networksen
dc.subjectMonte Carlo Methoden
dc.subjectwater distribution systems
dc.subjectchlorine decay
dc.subjectartificial neural networks
dc.subjectMonte Carlo Method
dc.titleUsing artificial neural network models to assess water quality in water distribution networksen
dc.title.alternativeUsing artificial neural network models to assess water quality in water distribution networksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-108425en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:46:30en
sync.item.modts2025.10.14 10:11:05en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav vodního hospodářství obcícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1877705814000472main.pdf
Size:
921.66 KB
Format:
Adobe Portable Document Format
Description:
1s2.0S1877705814000472main.pdf