Evaluation Of The Neural Network Object Detection In Multi-Modal Images
but.event.date | 27.04.2021 | cs |
but.event.title | STUDENT EEICT 2021 | cs |
dc.contributor.author | Ligocki, Adam | |
dc.date.accessioned | 2023-01-06T10:05:43Z | |
dc.date.available | 2023-01-06T10:05:43Z | |
dc.date.issued | 2021 | cs |
dc.description.abstract | This paper studies the information gain of various data domains that are commonly usedin the modern Advanced Driving Assistant Systems (ADAS) to develop robust systems that wouldincrease traffic safety. We could see a fast growth of many Deep Convolutional Neural Networks(DCNN) based solutions during the last several years. These methods are state-of-the-art in objectdetection and semantic scene segmentation. We created a small annotated dataset of synchronizedRGB, grayscale, thermal, and depth map images and used the modern DCNN framework tool toevaluate the object detection robustness of different data domains and their information gain processunderstanding the surrounding environment of the semi-autonomous driving agent. | en |
dc.format | text | cs |
dc.format.extent | 156-160 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 156-160. ISBN 978-80-214-5943-4 | cs |
dc.identifier.doi | 10.13164/eeict.2021.156 | |
dc.identifier.isbn | 978-80-214-5943-4 | |
dc.identifier.uri | http://hdl.handle.net/11012/200832 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Multi-modal | en |
dc.subject | Object Detection | en |
dc.subject | Convolutional Neural Network | en |
dc.subject | RGB | en |
dc.subject | Grayscale | en |
dc.subject | Thermal,IR | en |
dc.subject | Depth Map | en |
dc.title | Evaluation Of The Neural Network Object Detection In Multi-Modal Images | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 156_EEICT_2021_2.pdf
- Size:
- 3.92 MB
- Format:
- Adobe Portable Document Format
- Description: