Rigidity of Holomorphically Projective Mappings of Kähler Spaces with Finite Complete Geodesics
dc.contributor.author | Vítková, Lenka | cs |
dc.contributor.author | Hinterleitner, Irena | cs |
dc.contributor.author | Mikeš, Josef | cs |
dc.coverage.issue | 8 | cs |
dc.coverage.volume | 12 | cs |
dc.date.accessioned | 2025-02-03T14:44:47Z | |
dc.date.available | 2025-02-03T14:44:47Z | |
dc.date.issued | 2024-04-19 | cs |
dc.description.abstract | In this work, we consider holomorphically projective mappings of (pseudo-) K & auml;hler spaces. We determine the conditions for finite complete geodesics that must be satisfied for the mappings to be trivial; i.e., these spaces are rigid. | en |
dc.format | text | cs |
dc.format.extent | 1-13 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Mathematics. 2024, vol. 12, issue 8, p. 1-13. | en |
dc.identifier.doi | 10.3390/math12081239 | cs |
dc.identifier.issn | 2227-7390 | cs |
dc.identifier.orcid | 0000-0003-4805-908X | cs |
dc.identifier.orcid | 0000-0002-1046-578X | cs |
dc.identifier.other | 188702 | cs |
dc.identifier.researcherid | AAD-4510-2019 | cs |
dc.identifier.scopus | 57197859529 | cs |
dc.identifier.scopus | 35219039100 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/249932 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Mathematics | cs |
dc.relation.uri | https://www.mdpi.com/2227-7390/12/8/1239 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2227-7390/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | geodesic | en |
dc.subject | holomorphically projective mappings | en |
dc.subject | K & auml | en |
dc.subject | hler space | en |
dc.subject | rigidity | en |
dc.subject | Riemann tensor | en |
dc.subject | symmetric space | en |
dc.title | Rigidity of Holomorphically Projective Mappings of Kähler Spaces with Finite Complete Geodesics | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-188702 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:44:47 | en |
sync.item.modts | 2025.01.17 15:27:46 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometrie | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mathematics1201239v2.pdf
- Size:
- 343.13 KB
- Format:
- Adobe Portable Document Format
- Description:
- file mathematics1201239v2.pdf