Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses
Loading...
Date
Authors
Kledus, Filip
Dobrovolná, Michaela
Mergny, Jean-Louis
Brázda, Václav
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
ORCID
Altmetrics
Abstract
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Description
Keywords
Citation
Scientific Reports. 2025, vol. 15, issue 1, p. 1-12.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11696869/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11696869/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0003-2837-4226 