Chest X-ray Image Analysis using Convolutional Vision Transformer

Loading...
Thumbnail Image
Date
2023
Authors
Mezina, Anzhelika
Burget, Radim
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
In recent years, computer techniques for clinical imageanalysis have been improved significantly, especially becauseof the pandemic situation. Most recent approaches are focusedon the detection of viral pneumonia or COVID-19 diseases.However, there is less attention to common pulmonary diseases,such as fibrosis, infiltration and others. This paper introduces theneural network, which is aimed to detect 14 pulmonary diseases.This model is composed of two branches: global, which is theInceptionNetV3, and local, which consists of Inception modulesand a modified Vision Transformer. Additionally, the AsymmetricLoss function was utilized to deal with the problem of multilabelclassification. The proposed model has achieved an AUC of 0.8012and an accuracy of 0.7429, which outperforms the well-knownclassification models.
Description
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 161-165. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO