Chest X-ray Image Analysis using Convolutional Vision Transformer

Loading...
Thumbnail Image

Date

Authors

Mezina, Anzhelika
Burget, Radim

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

In recent years, computer techniques for clinical imageanalysis have been improved significantly, especially becauseof the pandemic situation. Most recent approaches are focusedon the detection of viral pneumonia or COVID-19 diseases.However, there is less attention to common pulmonary diseases,such as fibrosis, infiltration and others. This paper introduces theneural network, which is aimed to detect 14 pulmonary diseases.This model is composed of two branches: global, which is theInceptionNetV3, and local, which consists of Inception modulesand a modified Vision Transformer. Additionally, the AsymmetricLoss function was utilized to deal with the problem of multilabelclassification. The proposed model has achieved an AUC of 0.8012and an accuracy of 0.7429, which outperforms the well-knownclassification models.

Description

Citation

Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 161-165. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO