Influence of Fumed Nanosilica on Ballistic Performance of UHPCs

Loading...
Thumbnail Image

Authors

Markusík, David
Bocian, Luboš
Novotný, Radoslav
Palovčík, Jakub
Hrbáčová, Markéta

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This research delves into the potential use of fumed nanosilica in ultra-high performance concrete for ballistic protection. First, the mechanical properties, slump flow, and specific gravity of UHPC with different contents of Aerosil 200 were determined. Then, calorimetric studies were conducted on these cement composites. Lastly, the differential efficiency factor and spalling area of UHPC with fumed nanosilica were determined. It was found out that the slump flow, the mechanical properties, and differential efficiency factor are slightly decreased by the addition of fumed nanosilica. However, the addition of the fumed nanosilica is beneficial in terms of the spalling area decrease and it is highly reactive during the induction period. Some of the results are supported by BSEM imaging.
This research delves into the potential use of fumed nanosilica in ultra-high performance concrete for ballistic protection. First, the mechanical properties, slump flow, and specific gravity of UHPC with different contents of Aerosil 200 were determined. Then, calorimetric studies were conducted on these cement composites. Lastly, the differential efficiency factor and spalling area of UHPC with fumed nanosilica were determined. It was found out that the slump flow, the mechanical properties, and differential efficiency factor are slightly decreased by the addition of fumed nanosilica. However, the addition of the fumed nanosilica is beneficial in terms of the spalling area decrease and it is highly reactive during the induction period. Some of the results are supported by BSEM imaging.

Description

Citation

Materials. 2023, vol. 16, issue 6, 19 p.
https://www.mdpi.com/1996-1944/16/6/2151

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO