Hand Detection In Static Images, Video Sequences And Real Time Camera Feed
but.event.date | 25.04.2019 | cs |
but.event.title | Student EEICT 2019 | cs |
dc.contributor.author | Bravenec, Tomáš | |
dc.date.accessioned | 2020-04-16T07:19:35Z | |
dc.date.available | 2020-04-16T07:19:35Z | |
dc.date.issued | 2019 | cs |
dc.description.abstract | The goal of this project is to create a computer vision system capable of hand detection in static images and in video sequence either from existing recording or real time feed from connected camera. Algorithms commonly used for hand detection are mostly dependent on simple background and are very dependent on the lightning changes. To mostly eliminate these issues this project uses deep convolutional neural network trained for hand detection. | en |
dc.format | text | cs |
dc.format.extent | 386-389 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 25st Conference STUDENT EEICT 2019. s. 386-389. ISBN 978-80-214-5735-5 | cs |
dc.identifier.isbn | 978-80-214-5735-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/186699 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 25st Conference STUDENT EEICT 2019 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Computer Vision | en |
dc.subject | Hand detection | en |
dc.subject | Convolutional Neural Networks | en |
dc.subject | Deep Learning | en |
dc.title | Hand Detection In Static Images, Video Sequences And Real Time Camera Feed | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 386_eeict2019.pdf
- Size:
- 910.13 KB
- Format:
- Adobe Portable Document Format
- Description: