Rozpoznávání písmen pomocí neuronové sítě

Loading...
Thumbnail Image

Date

Authors

Kluknavský, František

Mark

D

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Práca sa na úlohe rozpoznávania rukou písaných písmen zaoberá implementáciou viacvrstvovej perceptrónovej siete, učením metódou spätného šírenia chyby, hľadaním ich optimálnych parametrov, šírkou skrytej vrstvy, rýchlosťou a dĺžkou učenia, zvládaním poškodených dát. Výsledky vznikli opakovaným simulovaním a testovaním neurónovej siete použitím 52 152 malých písmen anglickej abecedy. Najlepšie výsledky pri čo najmenšej sieti a najkratšom čase tréningu dosiahla sieť so 60 neurónmi v skrytej vrstve a učenie rýchlosťou 0,01. Siete so širšou skrytou vrstvou dosiahli približne rovnakú úspešnosť pri testoch na neznámych písmenách, ale vyššiu úspešnosť na silne poškodených písmenách.
This work uses handwritten character recognition as a model problem for using multilayer perceptron, error backpropagation learning algorithm and finding their optimal parameters, hidden layer size, learning rate and length, ability to handle damaged data. Results were acquired by repeated simulation and testing the neural network using 52,152 English lowercase letters. Best results, smallest network and shortest learning time was at 60 neurons in the hidden layer and learning rate of 0.01. Bigger networks achieved the same ability to recognize unknown patterns and higher robustness at highly damaged data processing.

Description

Citation

KLUKNAVSKÝ, F. Rozpoznávání písmen pomocí neuronové sítě [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

Date of acceptance

Defence

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO