Applying time-resolved photoluminescence in scanning near-field optical microscopy to map charge-carrier dynamics in CsPbBr3 nanocrystals

dc.contributor.authorKlok, Pavelcs
dc.contributor.authorLiška, Petrcs
dc.contributor.authorKřápek, Vlastimilcs
dc.contributor.authorČernek, Ondrejcs
dc.contributor.authorNováček, Zdeněkcs
dc.contributor.authorŠamořil, Tomášcs
dc.contributor.authorBouchal, Petrcs
dc.contributor.authorKratochvíl, Matoušcs
dc.contributor.authorUlč, Filipcs
dc.contributor.authorČecháček, Jancs
dc.contributor.authorSpousta, Jiřícs
dc.contributor.authorŠikola, Tomášcs
dc.contributor.authorViewegh, Petrcs
dc.coverage.issue22cs
dc.coverage.volume138cs
dc.date.accessioned2026-01-20T11:53:57Z
dc.date.issued2025-12-14cs
dc.description.abstractCharge-carrier dynamics in perovskite materials are commonly investigated using techniques that either provide spatially averaged information or probe only a single point, often overlooking nanoscale heterogeneities that critically influence device performance. In this work, time-resolved photoluminescence mapping in aperture-type scanning near-field optical microscopy was used to directly visualize charge-carrier behavior in CsPbBr3 nanocrystal films, achieving sub-diffraction spatial resolution of 150nm and temporal resolution of 100ps. Through the combination of near-field optical excitation and simultaneous topographical characterization, structural features were found to influence local optical and electronic properties. Spatial variations in photoluminescence intensity, emission wavelength, and carrier lifetimes were observed across quasi-continuous films formed by nanocrystal aggregation. These heterogeneities, which are highly relevant to optoelectronic and photonic applications, were shown to significantly affect carrier recombination dynamics. Notably, regions exhibiting redshifted emission were found to have longer photoluminescence lifetimes, indicating a strong correlation between spectral properties and recombination processes. This study demonstrates how near-field time-resolved photoluminescence can serve as a powerful tool to probe local charge-carrier dynamics in perovskite materials and offers new insights for their more reliable and efficient integration into next-generation optoelectronic technologies.en
dc.description.abstractCharge-carrier dynamics in perovskite materials are commonly investigated using techniques that either provide spatially averaged information or probe only a single point, often overlooking nanoscale heterogeneities that critically influence device performance. In this work, time-resolved photoluminescence mapping in aperture-type scanning near-field optical microscopy was used to directly visualize charge-carrier behavior in CsPbBr3 nanocrystal films, achieving sub-diffraction spatial resolution of 150nm and temporal resolution of 100ps. Through the combination of near-field optical excitation and simultaneous topographical characterization, structural features were found to influence local optical and electronic properties. Spatial variations in photoluminescence intensity, emission wavelength, and carrier lifetimes were observed across quasi-continuous films formed by nanocrystal aggregation. These heterogeneities, which are highly relevant to optoelectronic and photonic applications, were shown to significantly affect carrier recombination dynamics. Notably, regions exhibiting redshifted emission were found to have longer photoluminescence lifetimes, indicating a strong correlation between spectral properties and recombination processes. This study demonstrates how near-field time-resolved photoluminescence can serve as a powerful tool to probe local charge-carrier dynamics in perovskite materials and offers new insights for their more reliable and efficient integration into next-generation optoelectronic technologies.en
dc.formattextcs
dc.format.extent11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJOURNAL OF APPLIED PHYSICS. 2025, vol. 138, issue 22, 11 p.en
dc.identifier.doi10.1063/5.0297312cs
dc.identifier.issn0021-8979cs
dc.identifier.orcid0009-0000-9556-4455cs
dc.identifier.orcid0000-0003-0424-5366cs
dc.identifier.orcid0000-0002-4047-8653cs
dc.identifier.orcid0000-0002-4997-168Xcs
dc.identifier.orcid0000-0002-5450-8710cs
dc.identifier.orcid0000-0003-4658-7655cs
dc.identifier.orcid0000-0002-6159-8099cs
dc.identifier.orcid0000-0002-4397-2067cs
dc.identifier.orcid0009-0003-6038-8959cs
dc.identifier.orcid0009-0004-9469-875Xcs
dc.identifier.orcid0000-0003-2511-4410cs
dc.identifier.orcid0000-0003-4217-2276cs
dc.identifier.orcid0000-0003-3659-9249cs
dc.identifier.other200040cs
dc.identifier.researcheridGQX-0322-2022cs
dc.identifier.researcheridA-6917-2013cs
dc.identifier.researcheridE-3023-2012cs
dc.identifier.researcheridV-6987-2018cs
dc.identifier.researcheridG-8464-2014cs
dc.identifier.researcheridAAB-8626-2019cs
dc.identifier.researcheridA-9810-2014cs
dc.identifier.scopus47861033100cs
dc.identifier.scopus57218886044cs
dc.identifier.urihttps://hdl.handle.net/11012/255848
dc.language.isoencs
dc.relation.ispartofJOURNAL OF APPLIED PHYSICScs
dc.relation.urihttps://pubs.aip.org/aip/jap/article/138/22/223107/3374439/Applying-time-resolved-photoluminescence-incs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0021-8979/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectBEAM-INDUCED TRANSFORMATIONSen
dc.subjectPEROVSKITEen
dc.subjectDIFFUSIONen
dc.subjectEXCITONen
dc.subjectSPECTROSCOPYen
dc.subjectLIFETIMEen
dc.subjectBEAM-INDUCED TRANSFORMATIONS
dc.subjectPEROVSKITE
dc.subjectDIFFUSION
dc.subjectEXCITON
dc.subjectSPECTROSCOPY
dc.subjectLIFETIME
dc.titleApplying time-resolved photoluminescence in scanning near-field optical microscopy to map charge-carrier dynamics in CsPbBr3 nanocrystalsen
dc.title.alternativeApplying time-resolved photoluminescence in scanning near-field optical microscopy to map charge-carrier dynamics in CsPbBr3 nanocrystalsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/EH/EH22_008/0004572cs
sync.item.dbidVAV-200040en
sync.item.dbtypeVAVen
sync.item.insts2026.01.20 12:53:57en
sync.item.modts2026.01.20 12:33:18en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
223107_1_5.0297312.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
Description:
file 223107_1_5.0297312.pdf